Skip to main content
Log in

Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The newly launched GF-2 satellite is now the most advanced civil satellite in China to collect high spatial resolution remote sensing data. This study investigated the capability and strategy of GF-2 multispectral data for land use and land cover (LULC) classification in a region of the North China Plain. The pixel-based and object-based classifications using maximum likelihood (MLC) and support vector machine (SVM) classifiers were evaluated to determine the classification strategy that was suitable for GF-2 multispectral data. The validation results indicated that GF-2 multispectral data achieved satisfactory LULC classification performance, and object-based classification using the SVM classifier achieved the best classification accuracy with an overall classification accuracy of 94.33% and kappa coefficient of 0.911. Therefore, considering the LULC classification performance and data characteristics, GF-2 satellite data could serve as a valuable and reliable high-resolution data source for land surface monitoring. Future works should focus on improving LULC classification accuracy by exploring more classification features and exploring the potential applications of GF-2 data in related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam E, Mutanga O, Odindi J, Abdel-Rahman E M (2014). Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int J Remote Sens, 35(10): 3440–3458

    Article  Google Scholar 

  • Aguilar M, Bianconi F, Aguilar F, Fernández I (2014). Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens, 6(5): 3554–3582

    Article  Google Scholar 

  • Baatz M, Schäpe M (2000). Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: Strobl J, Blaschke T, Griesebner G, eds. Angewandte Geographische Informations-Verarbeitung XII. Karlsruhe: Wichmann Verlag, 12–23

    Google Scholar 

  • Benz U C, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens, 58(3–4): 239–258

    Article  Google Scholar 

  • Burges C J C (1998). A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov, 2(2): 121–167

    Article  Google Scholar 

  • Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2015). Global land cover mapping at 30 m resolution: a POK-based operational approach. ISPRS J Photogramm Remote Sens, 103: 7–27

    Article  Google Scholar 

  • Congalton R G, Green K (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Florida: Lewis Publishers

    Google Scholar 

  • Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H, Gardner J A, Adler-Golden SM, Matthew MW, Berk A, Bernstein L S, Acharya P K, Miller D, Lewis P (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: 2002 IEEE International Geoscience and Remote Sensing Symposium & 24th Canadian Symposium on Remote Sensing. Toronto, Canada: IEEE Press

    Google Scholar 

  • Duda R O, Hart P E (1973). Pattern Classification and Scene Analysis. New York: Wiley

    Google Scholar 

  • Foody G M (2009). Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ, 113(8): 1658–1663

    Article  Google Scholar 

  • Foody G M (2013). Ground reference data error and the mis-estimation of the area of land cover change as a function of its abundance. Remote Sens Lett, 4(8): 783–792

    Article  Google Scholar 

  • Foody G M, Campbell N A, Trodd N M, Wood T F (1992). Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm Eng Remote Sensing, 58: 1335–1341

    Google Scholar 

  • Foody G M, Mathur A (2004). A relative evaluation of multiclass image classification by support vector machines. IEEE Trans Geosci Remote Sens, 42(6): 1335–1343

    Article  Google Scholar 

  • Friedl M A, Brodley C E (1997). Decision tree classification of land cover from remotely sensed data. Remote Sens Environ, 61(3): 399–409

    Article  Google Scholar 

  • Gebbers R, Adamchuk V I (2010). Precision agriculture and food security. Science, 327(5967): 828–831

    Article  Google Scholar 

  • Gong P, Wang J, Yu L, Zhao Y C, Zhao Y Y, Liang L, Niu Z G, Huang X M, Fu H H, Liu S, Li C C, Li X Y, Fu W, Liu C X, Xu Y, Wang X Y, Cheng Q, Hu L Y, Yao W B, Zhang H, Zhu P, Zhao Z Y, Zhang H Y, Zheng Y M, Ji L Y, Zhang Y W, Chen H, Yan A, Guo J H, Wang L, Liu X J, Shi T T, Zhu M H, Chen Y L, Yang GW, Tang P, Xu B, Giri C, Clinton N, Zhu Z L, Chen J, Chen J (2013). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM + data. Int J Remote Sens, 34(7): 2607–2654

    Article  Google Scholar 

  • Gong P, Yu L, Li C, Wang J, Liang L, Li X, Ji L, Bai Y, Cheng Y, Zhu Z (2016). A new research paradigm for global land cover mapping. Ann GIS, 22(2): 87–102

    Article  Google Scholar 

  • Hansen M C, Defries R S, Townshend J R G, Sohlberg R (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens, 21(6–7): 1331–1364

    Article  Google Scholar 

  • Jia K, Li Q Z, Tian Y C, Wu B F, Zhang F F, Meng J H (2012). Crop classification using multi-configuration SAR data in the North China Plain. Int J Remote Sens, 33(1): 170–183

    Article  Google Scholar 

  • Jia K, Liang S, Zhang N, Wei X Q, Gu X F, Zhao X, Yao Y J, Xie X (2014a). Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J Photogramm Remote Sens, 93: 49–55

    Article  Google Scholar 

  • Jia K, Wei X Q, Gu X F, Yao Y J, Xie X H, Li B (2014b). Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int, 29(8): 941–951

    Article  Google Scholar 

  • Jia K, Wu B F, Li Q Z (2013). Crop classification using HJ satellite multispectral data in the North China Plain. J Appl Remote Sens, 7 (1): 073576

    Article  Google Scholar 

  • Jia K, Wu B F, Tian Y C, Zeng Y, Li Q Z (2011). Vegetation classification method with biochemical composition estimated from remote sensing data. Int J Remote Sens, 32(24): 9307–9325

    Article  Google Scholar 

  • Li Q, Cao X, Jia K, Zhang M, Dong Q (2014). Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. Int J Remote Sens, 35(16): 6076–6088

    Article  Google Scholar 

  • Liang S (2008). Advances in Land Remote Sensing System, Modeling Inversion and Application. Dordrecht: Springer

    Book  Google Scholar 

  • Liu J Y, Liu M L, Zhuang D F, Zhang Z X, Deng X Z (2003). Study on spatial pattern of land-use change in China during 1995–2000. Sci China Ser D Earth Sci, 46: 373–384

    Article  Google Scholar 

  • Lu D, Weng Q (2007). A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens, 28(5): 823–870

    Article  Google Scholar 

  • Ma L, Li M, Ma X, Cheng L, Du P, Liu Y (2017). A review of supervised object-based land-cover image classification. ISPRS J Photogramm Remote Sens, 130: 277–293

    Article  Google Scholar 

  • Mathur A, Foody G (2008). Crop classification by support vector machine with intelligently selected training data for an operational application. Int J Remote Sens, 29(8): 2227–2240

    Article  Google Scholar 

  • Miller S N, Phillip Guertin D, Goodrich D C (2007). Hydrologic modeling uncertainty resulting from land cover misclassification. J Am Water Resour Assoc, 43(4): 1065–1075

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011). Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens, 66(3): 247–259

    Article  Google Scholar 

  • Pal M, Foody G M (2012). Evaluation of SVM, RVM and SMLR for accurate image classification with limited ground data. IEEE J Sel Top Appl Earth Obs Remote Sens, 5(5): 1344–1355

    Article  Google Scholar 

  • Pal M, Mather P M (2005). Support vector machines for classification in remote sensing. Int J Remote Sens, 26(5): 1007–1011

    Article  Google Scholar 

  • Running S W (2008). Ecosystem disturbance, carbon, and climate. Science, 321(5889): 652–653

    Article  Google Scholar 

  • Schmidt M, Pringle M, Devadas R, Denham R, Tindall D (2016). A framework for large-area mapping of past and present cropping activity using seasonal Landsat images and time series metrics. Remote Sens, 8(4): 312

    Article  Google Scholar 

  • Tso B, Mather P M (2001). Classification Methods for Remotely Sensed Data. London: Taylor and Francis

    Book  Google Scholar 

  • Yan L, Roy D P (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens Environ, 172: 67–86

    Article  Google Scholar 

  • Yang J, Gong P, Fu R, Zhang M H, Chen J M, Liang S L, Xu B, Shi J C, Dickinson R (2013). The role of satellite remote sensing in climate change studies. Nat Clim Chang, 3(10): 875–883

    Article  Google Scholar 

  • Yu L, Su J, Li C, Wang L, Luo Z, Yan B (2018). Improvement of moderate resolution land use and land cover classification by introducing adjacent region features. Remote Sens, 10(3): 414

    Article  Google Scholar 

  • Zhang H, Li Q, Liu J, Shang J, Du X, Zhao L, Wang N, Dong T (2017). Crop classification and acreage estimation in North Korea using phenology features. GISci Remote Sens, 54(3): 381–406

    Article  Google Scholar 

  • Zhang L, Jia K, Li X S, Yuan Q Z, Zhao X F (2014). Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sens Lett, 5(1): 73–82

    Article  Google Scholar 

  • Zhang M W, Zhou Q B, Chen Z X, Liu J, Zhou Y, Cai C F (2008). Crop discrimination in northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int J Appl Earth Obs Geoinf, 10(4): 476–485

    Article  Google Scholar 

  • Zhong L, Hu L, Yu L, Gong P, Biging G S (2016). Automated mapping of soybean and corn using phenology. ISPRS J Photogramm Remote Sens, 119: 151–164

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for the constructive comments and suggestions, all of which have led to great improvements in the presentation of this article. This study was financially supported by the National Natural Science Foundation of China (Grant No. 41571422) and the National Key Research and Development Program of China (No. 2016YFA0600103). Kun Jia and Qiangzi Li conceived and designed the experiments; Kun Jia and Jingcan Liu performed the experiments and drafted the manuscript; XiangqinWei, Yunjun Yao, and Xiaotong Zhang supplied valuable suggestions on improving the method; Jingcan Liu, Yixuan Tu and Zhiwei Sun were responsible for field survey and classification accuracy assessment; All authors read and revised the manuscript. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangzi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, K., Liu, J., Tu, Y. et al. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain. Front. Earth Sci. 13, 327–335 (2019). https://doi.org/10.1007/s11707-018-0734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0734-8

Keywords

Navigation