Skip to main content
Log in

Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Phenology has become a good indicator for illustrating the long-term changes in the natural resources of the Yangtze River Delta. However, two issues can be observed from previous studies. On the one hand, existing time-series classification methods mainly using a single classifier, the discrimination power, can become deteriorated due to fluctuations characterizing the time series. On the other hand, previous work on the Yangtze River Delta was limited in the spatial domain (usually to 16 cities) and in the temporal domain (usually 2000–2010). To address these issues, this study attempts to analyze the spatiotemporal variation in phenology in the Yangtze River Delta (with 26 cities, enlarged by the state council in June 2016), facilitated by classifying the land cover types and extracting the phenological metrics based on Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series collected from 2001 to 2015. First, ensemble learning (EL)-based classifiers are used for land cover classification, where the training samples (a total of 201,597) derived from visual interpretation based on GlobelLand30 are further screened using vertex component analysis (VCA), resulting in 600 samples for training and the remainder for validating. Then, eleven phenological metrics are extracted by TIMESAT (a package name) based on the time series, where a seasonal-trend decomposition procedure based on loess (STL-decomposition) is used to remove spikes and a Savitzky-Golay filter is used for filtering. Finally, the spatio-temporal phenology variation is analyzed by considering the classification maps and the phenological metrics. The experimental results indicate that: 1) random forest (RF) obtains the most accurate classification map (with an overall accuracy higher than 96%); 2) different land cover types illustrate the various seasonalities; 3) the Yangtze River Delta has two obvious regions, i.e., the north and the south parts, resulting from different rainfall, temperature, and ecosystem conditions; 4) the phenology variation over time is not significant in the study area; 5) the correlation between gross spring greenness (GSG) and gross primary productivity (GPP) is very high, indicating the potential use of GSG for assessing the carbon flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abercrombie S P, Friedl M A (2016). Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans Geosci Remote Sens, 54(2): 703–713

    Article  Google Scholar 

  • Anderson M C, Zolin C A, Sentelhas P C, Hain C R, Semmens K, Tugrul Yilmaz M, Gao F, Otkin J A, Tetrault R (2016). The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens Environ, 174: 82–99

    Article  Google Scholar 

  • Breiman L (1996). Bagging predictors. Mach Learn, 24(2):123–140

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn, 45(1): 5–32

    Article  Google Scholar 

  • Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, Peng S, Han G, Zhang H W, He C Y, Wu H, Lu M (2014). Concepts and key techniques for 30 m global land cover mapping. Acta Geodaetica et Cartographica Sinica, 43(6): 551–557

    Google Scholar 

  • Chen J, Jonsson P, Tamura M, Gu Z H, Matsushita B, Eklundh L (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens Environ, 91 (3–4): 332–344

    Article  Google Scholar 

  • Chen J, Rao Y H, Shen M G, Wang C, Zhou Y, Ma L, Tang Y H, Yang X (2016). A simple method for detecting phenological change from time series of vegetation index. IEEE Trans Geosci Remote Sens, 54 (6): 3436–3449

    Article  Google Scholar 

  • Clauss K, Yan H M, Kuenzer C (2016). Mapping paddy rice in China in 2002, 2005, 2010 and 2014 with MODIS time series. Remote Sens, 8 (5): 434

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995). Support-vector networks. Mach Learn, 20 (3): 273–297

    Google Scholar 

  • Cover T M, Hart P E (1967). Nearest neighbor pattern classification. IEEE Trans Inf Theory, 13(1): 21–27

    Google Scholar 

  • Demir B, Bovolo F, Bruzzone L (2013). Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach. IEEE Trans Geosci Remote Sens, 51(1): 300–312

    Article  Google Scholar 

  • Du P J, Xia J S, Zhang W, Tan K, Liu Y, Liu S C (2012). Multiple classifier system for remote sensing image classification: a review. Sensors (Basel), 12(4): 4764–4792

    Article  Google Scholar 

  • Eklundh L, Jönsson P (2015). Timesat 3.2 software mannual. Lund and Malmö University, Sweden

    Google Scholar 

  • Fensholt R, Proud SR (2012). Evaluation of earth observation based global long term vegetation trends- Comparing GIMMS and MODIS global NDVI time series. Remote Sens Environ, 119: 131–147 doi:10.1016/j.rse.2011.12.015

    Article  Google Scholar 

  • Fernandez-Delgado M, Cernadas E, Barro S, Amorim D (2014). Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res, 15: 3133–3181

    Google Scholar 

  • Foody G M (2004). Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sensing, 70(5): 627–633

    Article  Google Scholar 

  • Ghosh S, Mishra D R, Gitelson A A (2016). Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico–A methodological approach using MODIS. Remote Sens Environ, 173: 39–58

    Article  Google Scholar 

  • Gómez C, White J C, Wulder M A (2016). Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens, 116: 55–72

    Article  Google Scholar 

  • Guan X D, Huang C, Liu G H, Meng X L, Liu Q S (2016). Mapping rice cropping systems in Vietnam using an NDVI-based time-series similarity measurement based on DTW distance. Remote Sens, 8(1): 19

    Article  Google Scholar 

  • Han G F, Xu J H (2013). Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, China. Environ Manage, 52(1): 234–249

    Article  Google Scholar 

  • Heremans S, Suykens J A K, Van Orshoven J (2016). The effect of imposing ‘fractional abundance constraints’ onto the multilayer perceptron for sub-pixel land cover classification. Int J Appl Earth Obs Geoinf, 44: 226–238

    Article  Google Scholar 

  • Hmimina G, Dufrêne E, Pontailler J Y, Delpierre N, Aubinet M, Caquet B, de Grandcourt A, Burban B, Flechard C, Granier A, Gross P, Heinesch B, Longdoz B, Moureaux C, Ourcival JM, Rambal S, Saint André L, Soudani K (2013). Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sens Environ, 132: 145–158

    Article  Google Scholar 

  • Ho T K (1998). The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell, 20(8): 832–844

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1–2): 195–213

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens, 40(8): 1824–1832

    Article  Google Scholar 

  • Karalas K, Tsagkatakis G, Zervakis M, Tsakalides P (2016). Land classification using remotely sensed data: going multilabel. IEEE Trans Geosci Remote Sens, 54(6): 3548–3563

    Article  Google Scholar 

  • Li J, Bioucas-Dias J M, Plaza A (2011). Hyperspectral image segmentation using a new Bayesian approach with active learning. IEEE Trans Geosci Remote Sens, 49(10): 3947–3960

    Article  Google Scholar 

  • Li M M, Mao Z C, Song Y, Liu M X, Huang X (2015). Impacts of the decadal urbanization on thermally induced circulations in eastern China. J Appl Meteorol Climatol, 54(2): 259–282

    Article  Google Scholar 

  • Marston C G, Giraudoux P, Armitage R P, Danson F M, Reynolds S C, Wang Q, Qiu J M, Craig P S (2016). Vegetation phenology and habitat discrimination: impacts for E. multilocularis transmission host modelling. Remote Sens Environ, 176: 320–327

    Article  Google Scholar 

  • Nascimento J MP, Dias JM B (2005). Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens, 43(4): 898–910

    Article  Google Scholar 

  • Qader S H, Dash J, Atkinson P M, Rodriguez-Galiano V (2016). Classification of vegetation type in Iraq using satellite-based phenological parameters. IEEE J Sel Top Appl Earth Obs Remote Sens, 9(1): 414–424

    Article  Google Scholar 

  • Qiu B W, Feng M, Tang Z H (2016). A simple smoother based on continuous wavelet transform: comparative evaluation based on the fidelity, smoothness and efficiency in phenological estimation. Int J Appl Earth Obs Geoinf, 47: 91–101

    Article  Google Scholar 

  • Rodriguez J J, Kuncheva L I, Alonso C J (2006). Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell, 28 (10): 1619–1630

    Article  Google Scholar 

  • Shao Y, Lunetta R S, Wheeler B, Iiames J S, Campbell J B (2016). An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens Environ, 174: 258–265

    Article  Google Scholar 

  • Shi J J, Huang J F (2015). Monitoring spatio-temporal distribution of rice planting area in the Yangtze River Delta region using MODIS images. Remote Sens, 7(7): 8883–8905

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ, 114(1): 106–115

    Article  Google Scholar 

  • Verger A, Filella I, Baret F, Penuelas J (2016). Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ, 178: 1–14

    Article  Google Scholar 

  • Wardlow B D, Egbert S L, Kastens J H (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens Environ, 108(3): 290–310

    Article  Google Scholar 

  • Wei H Y, Heilman P, Qi J G, Nearing M A, Gu Z H, Zhang Y G (2012). Assessing phenological change in China from 1982 to 2006 using AVHRR imagery. Front Earth Sci, 6(3): 227–236

    Article  Google Scholar 

  • Wohlfart C, Liu G H, Huang C, Kuenzer C (2016). A river basin over the course of time: multi-temporal analyses of land surface dynamics in the Yellow River Basin (China) based on medium resolution remote sensing data. Remote Sens, 8(3): 186

    Article  Google Scholar 

  • Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y (2009). Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell, 31(2): 210–227

    Article  Google Scholar 

  • Xia J S, Dalla Mura M, Chanussot J, Du P J, He X Y (2015). Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles. IEEE Trans Geosci Remote Sens, 53(9): 4768–4786

    Article  Google Scholar 

  • Xia J S, Du P J, He X Y, Chanussot J (2014). Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett, 11(1): 239–243

    Article  Google Scholar 

  • Xue Z H, Du P J, Feng L (2014a). Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series. IEEE J Sel Top Appl Earth Obs Remote Sens, 7(4): 1142–1156

    Article  Google Scholar 

  • Xue Z H, Du P J, Su H J (2014b). Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE J Sel Top Appl Earth Obs Remote Sens, 7(6): 2131–2146

    Article  Google Scholar 

  • Xue Z H, Li J, Cheng L, Du P J (2015). Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation. IEEE Trans Geosci Remote Sens, 53(1): 70–84

    Article  Google Scholar 

  • Zeng L L, Wardlow B D, Wang R, Shan J, Tadesse T, Hayes M J, Li D R (2016). A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens Environ, 181: 237–250

    Article  Google Scholar 

  • Zhang B H, Zhang L, Xie D, Yin X L, Liu C J, Liu G (2016). Application of synthetic NDVI time series blended from Landsat and MODIS data for grassland biomass estimation. Remote Sensing, 8: 10

    Article  Google Scholar 

  • Zhang C, Ma Y (2012). Ensemble Machine Learning. Springer Verlag New York

    Book  Google Scholar 

  • Zhang X Y, Zhang Q Y (2016). Monitoring interannual variation in global crop yield using long-term AVHRR and MODIS observations. ISPRS J Photogramm Remote Sens, 114: 191–205

    Article  Google Scholar 

  • Zhao B, Yan Y, Guo H Q, He M M, Gu Y J, Li B (2009). Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area. Ecol Indic, 9(2): 346–356

    Article  Google Scholar 

  • Zhao J J, Wang Y Y, Zhang Z X, Zhang H Y, Guo X Y, Yu S, Du W L, Huang F (2016). The variations of land surface phenology in northeast China and its responses to climate change from 1982 to 2013. Remote Sens, 8(5): 400

    Article  Google Scholar 

  • Zhou D C, Zhao S Q, Zhang L X, Liu S G (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens Environ, 176: 272–281

    Article  Google Scholar 

  • Zhu C M, Lu D S, Victoria D, Dutra L V (2016). Mapping fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat thematic mapper data. Remote Sens, 8: 22

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 41601347), the Natural Science Foundation of Jiangsu Province (BK20160860), the Fundamental Research Funds for the Central Universities (2018B17814), the Open Research Found of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (17R04), the Fundamental Research Funds for the Central Universities, and the Open Research Fund in 2018 of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410406). The authors would like to thank USGS LP DAAC for sharing the MODIS product data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xue, Z., Chen, J. et al. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015. Front. Earth Sci. 13, 92–110 (2019). https://doi.org/10.1007/s11707-018-0713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-018-0713-0

Keywords

Navigation