Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)

Abstract

Given that floods continue to cause yearly significant worldwide human and material damages, flood risk mitigation is a key issue and a permanent challenge in developing policies and strategies at various spatial scales. Therefore, a basic phase is elaborating hazard and flood risk maps, documents which are an essential support for flood risk management. The aim of this paper is to develop an approach that allows for the identification of flash-flood and flood-prone susceptible areas based on computing and mapping of two indices: FFPI (Flash-Flood Potential Index) and FPI (Flooding Potential Index). These indices are obtained by integrating in a GIS environment several geographical variables which control runoff (in the case of the FFPI) and favour flooding (in the case of the FPI). The methodology was applied in the upper (mountainous) and middle (hilly) catchment of the Prahova River, a densely populated and socioeconomically well-developed area which has been affected repeatedly by water-related hazards over the past decades. The resulting maps showing the spatialization of the FFPI and FPI allow for the identification of areas with high susceptibility to flash-floods and flooding. This approach can provide useful mapped information, especially for areas (generally large) where there are no flood/hazard risk maps. Moreover, the FFPI and FPI maps can constitute a preliminary step for flood risk and vulnerability assessment.

This is a preview of subscription content, access via your institution.

References

  1. Arghiuş C, Arghiuş V (2011). The quantitative estimation of the soil erosion using USLE type ROMSEM model. Case-study: the Codrului ridge and piedmont (Romania). Carpath J Earth Environ Sci, 6(2): 59–66

    Google Scholar 

  2. Auerswald K, Haider J (1996). Runoff curve numbers for small grain under German cropping conditions. J Environ Manage, 47(3): 223–228

    Article  Google Scholar 

  3. Balica S, Dinh Q, Popescu I, Vo T Q, Pham D Q (2014). Flood impact in the Mekong Delta, Vietnam. J Maps, 10(2): 257–268

    Article  Google Scholar 

  4. Bilaşco Ş (2008). Implementing GIS in slope flash-flood modelling (in Romanian). Casa Cărţii de Ştiinţă Cluj-Napoca, Romania

    Google Scholar 

  5. Bilaşco Ş, Horvath C, Cocean P, Sorocovschi V, Oncu M (2009). Implementation of the USLE model using GIS techniques. Case study the Someşean Plateau. Carpath J Earth Environ Sci, 4(2): 123–132

    Google Scholar 

  6. Bîrsan M V, Zaharia L, Chendeş V, Brănescu E (2014). Seasonal trends in Romanian streamflow. Hydrol Processes, 28(15): 4496–4505

    Article  Google Scholar 

  7. Bogdan O (1983). Climatic and topoclimatic regions in Romanian Geography (in Romanian). Physical Geography, Ed. Academiei R.S. R., p. 277–279, Bucharest, Romania

    Google Scholar 

  8. Braud I, Roux H, Anquetin S, Maubourguet M M, Manus C, Viallet P, Dartus D (2010). The use of distributed hydrological models for the Gard 2002 flash flood event: analysis of associated hydrological processes. J Hydrol (Amst), 394(1): 162–181

    Article  Google Scholar 

  9. Busuioc A, Caian M, Cheval S, Bojariu R, Boroneanţ C, Baciu M, Dumitrescu A (2010). Climate variability and change in Romania (in Romanian). Pro Universitaria Publishing, Bucharest, Romania

    Google Scholar 

  10. Chendeş V (2007). Liquid and solid runoff in the Curvature Subcarpathians (in Romanian). Dissertation for PhD degree. Romanian Academy, Geography Institute, Library of the Geography Institute, Bucharest, Romania

    Google Scholar 

  11. CLC (2006). Corine Land cover (raster data). European Environment Agency. Accessed at www.eea.europa.eu

    Google Scholar 

  12. Conoscenti C, Di Maggio C, Rotigliano E (2008). GIS analysis to assess landslide susceptibility in a fluvial basin of NW Sicily (Italy). Geomorphology, 94(3–4): 325–339

    Article  Google Scholar 

  13. Constantinescu Ş (2006). Observations on morphometric indicators computed based on DEM (in Romanian). Accessed at http://earth. unibuc.ro/articole/observaii-asupraindicatorilor-morfometrici-determinaipe-baza-mnat

    Google Scholar 

  14. Costache R, Fontanine F, Corodescu E (2014). Assessment of surface runoff depth changes in Sǎrǎţel River basin, Romania using GIS techniques. Cent Eur J Geosci, 6(3): 363–372

    Google Scholar 

  15. Costache R, Prăvălie R (2012). The use of GIS techniques in the evaluation of the susceptibility of the floods genesis in the hydrographical basin of Bâsca Chiojdului river. Analele Universităţii din Oradea. Seria Geografie, 22(2): 284–293

    Google Scholar 

  16. Costache R, Prăvălie R, Mitof I, Popescu C (2015). Flood vulnerability assessment in the low sector of Saratel catchment. Case study: Joseni village. Carpath J Earth Environ Sci, 10(1): 161–169

    Google Scholar 

  17. CRED (2015). Centre for Research on the Epidemiology of Disasters–Report on Human cost of Natural Disasters. A global perspective. Accessed at http://www.cred.be/publication/reporthuman-cost-natural-disasters-global-perspective

    Google Scholar 

  18. Croitoru A E, Minea I (2015). The impact of climate changes on rivers discharge in Eastern Romania. Theor Appl Climatol, 120(3–4): 563–573

    Article  Google Scholar 

  19. Croitoru A E, Piţicar A, Burada D C (2016). Changes in precipitation extremes in Romania. Quat Int, 415: 325–335

    Article  Google Scholar 

  20. DEPC (2007). Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, Official Journal of the European Union L 288(27) 8p. Accessed at http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri = OJ:L:2007:288:0027:0034:en:pdf

    Google Scholar 

  21. Diakakis M (2011). A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece. Nat Hazards, 56(3): 803–814

    Article  Google Scholar 

  22. Domniţa M (2012). Runoff modeling using GIS. Application in torrential basins in the Apuseni Mountains. Dissertation for PhD degree. Cluj Napoca, Romania

    Google Scholar 

  23. Drobot R (2007). Methodology for determining torrential catchments in which human settlements are exposed to flash floods (in Romanian). Technical University of Civil Engineering, Bucharest, Romania

    Google Scholar 

  24. Dumitrescu A, Bojariu R, Bîrsan M V, Marin L, Manea A (2015). Recent climatic changes in Romania from observational data (1961–2013). Theor Appl Climatol, 122(1–2): 111–119

    Article  Google Scholar 

  25. Fontanine I, Costache R D (2013). The potential for water diffuse pollution with heavy metals in Arieş river basin. Analele Ştiintifice ale Universităţii" Alexandru Ioan Cuza" din Iasi. Seria Geografie, 59(2): 59–72

    Google Scholar 

  26. Georgakakos K P (2006). Analytical results for operational flash flood guidance. J Hydrol (Amst), 317(1–2): 81–103

    Article  Google Scholar 

  27. Gobin A, Jones R, Kirkby M, Campling P, Govers G, Kosmas C, Gentile A R (2004). Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy, 7(1): 25–38

    Article  Google Scholar 

  28. Godfrey A, Ciurean R L, van Westen C J, Kingma N C, Glade T (2015). Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach–An application in NehoiuValley, Romania. Int J Disaster Risk Reduct, 13: 229–241

    Article  Google Scholar 

  29. Gonçalves P, Marafuz I, Gomes A (2015). Flood hazard, Santa Cruz do Bispo Sector, Leça River, Portugal: a methodological contribution to improve land use planning. J Maps, 11(5): 760–771

    Article  Google Scholar 

  30. Grimaldi S, Petroselli A, Romano N (2013). Green-Ampt Curve-Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins. Hydrol Processes, 27(8): 1253–1264

    Article  Google Scholar 

  31. Hooshyar M, Wang D (2016). An analytical solution of Richards’ equation providing the physical basis of SCS curve number method and its proportionality relationship. Water Resour Res, 52(8): 6611–6620

    Article  Google Scholar 

  32. IESP (2016). Communicate-buletine (in Romanian). Accessed at http:// www.isuprahova.ro/b.i.-c.p.html

    Google Scholar 

  33. Ioana-Toroimac G (2009). La dynamique hydromorphologique de la rivière Prahova (Roumanie): fonctionnement actuel, évolution récente et conséquences géographiques. PhD Thesis in Geography, University of Lille 1, France

    Google Scholar 

  34. Ioana-Toroimac G (2016). Inventory of long-term braiding activity at a regional scaleas a tool for detecting alterations to a rivers’ hydromorphological state: a case study for Romania’s south-eastern Subcarpathians. Environ Manage, 58(1): 93–106

    Article  Google Scholar 

  35. Ioana-Toroimac G, Dobre R, Grecu F, Zaharia L (2010). A 2D active channel’s evolution of the Upper Prahova River (Romania) during the last 150 years. Géomorphologie, 16(3): 275–286

    Article  Google Scholar 

  36. Jacinto R, Grosso N, Reis E, Dias L, Santos F D, Garrett P (2015). Continental Portuguese territory flood susceptibility index–contribution to a vulnerability index. Nat Hazards Earth Syst Sci, 15(8): 1907–1919

    Article  Google Scholar 

  37. Jain M K, Kothyari U C (2000). Estimation of soil erosion and sediment yield using GIS. Hydrol Sci J, 45(5): 771–786

    Article  Google Scholar 

  38. Kottegoda N T, Natale L, Raiteri E (2000). Statistical modelling of daily streamflows using rainfall input and curve number technique. J Hydrol (Amst), 234(3–4): 170–186

    Article  Google Scholar 

  39. Kourgialas N N, Karatzas G P (2011). Flood management and a GIS modelling method to assess floodhazard areas—A case study. Hydrol Sci J, 56(2): 212–225

    Article  Google Scholar 

  40. Kundzewicz Z W, Pińskwar I, Brakenridge G R (2013). Large floods in Europe, 1985–2009. Hydrol Sci J, 58(1): 1–7

    Article  Google Scholar 

  41. Mahmoud S H, Alazba A A, Adamowski J, El-Gindy A M (2015). GIS methods for sustainable stormwater harvesting and storage using remote sensing for land cover data-location assessment. Environ Monit Assess, 187(9): 598–616

    Article  Google Scholar 

  42. Marchi L, Borga M, Preciso E, Gaume E (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol (Amst), 394(1–2): 118–133

    Article  Google Scholar 

  43. MEWM (2006). Ministry of Environment and Water Management–Report on the effects of flooding and dangerous meteorological phenomena in 2005, implemented measures, actions taken to repair affected units and to diminish or prevent future damages (in Romanian), 40 p, Bucharest, Romania

    Google Scholar 

  44. Minea G (2013). Assessment of the flash flood potential of Bâsca River Catchment (Romania) based on physiographic factors. Cent Eur J Geosci, 5(3): 344–353

    Google Scholar 

  45. Moore I D, Grayson R B, Landson A R (1993). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. In Beven K J, Moore I D, eds. Terrain Analysis and Distributed Modelling in Hydrology. Chichester: John Wiley and Sons, 7–34

    Google Scholar 

  46. Mustăţea A (2005). Exceptional flash floods on Romanian territory. Genesis and effects (in Romanian). National Institute of Hydrology and Water Mangement, Bucharest, Romania

    Google Scholar 

  47. Musy A, Higy C (2011). Hydrology. A Science of Nature. Enfield: CRC Press, Taylor & Francis Group, Science Publishers

    Google Scholar 

  48. Mutihac V, Stratulat M I, Fechet R M (2007). Geology of Romania (in Romanian). Didactică şi Pedagogică, Bucharest, Romania

    Google Scholar 

  49. NIRDSSAEP (2002). National Institute of Research and Development for Soil Science, Agrochemistry and Environmental Protection–Spatial data regarding the soil types in the study region, Bucharest, Romania

    Google Scholar 

  50. Norbiato D, Borga M, Degli Espoti S, Gaume E, Anquetin S (2008). Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J Hydrol (Amst), 362(3–4): 274–290

    Article  Google Scholar 

  51. Patra K C (2008). Hydrology and water resources engineering. Alpha Science International Ltd, Oxford, U.K.

    Google Scholar 

  52. Perju R (2012). Characteristics of floods in Valea Cerbului Catchment. In: Gâştescu P, Lewis W, Breţcan P, eds. Conference Proceedings Water resources and Wetlands, September 14–16, 2012, Tulcea, Romania

    Google Scholar 

  53. Pimentel D (2006). Soil erosion: a food and environmental threat. Environ Dev Sustain, 8(1): 119–137

    Article  Google Scholar 

  54. Prăvălie R, Bandoc G, Patriche C, Tomescu M (2016a). Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania. Stochastic Environ Res Risk Assess, doi: 10.1007/s00477-016-1278-7

    Google Scholar 

  55. Prăvălie R, Costache R (2013). The vulnerability of the territorialadministrative units to the hydrological phenomena of risk (Flash-Floods). Case study: the subcarpathian sector of Buzău Catchment. Analele Universității din Oradea–Seria Geografie, 23(1): 91–98

    Google Scholar 

  56. Prăvălie R, Zaharia L, Bandoc G, Petrişor A, Ionuş O, Mitof I (2016b). Hydroclimatic dynamics in southwestern Romania drylands over the past 50 years. J Earth Syst Sci, 125(6): 1255–1271

    Article  Google Scholar 

  57. Reistetter J A, Russell M (2011). High-resolution land cover datasets, composite curve numbers, and storm water retention in the Tampa Bay, FL region. Appl Geogr, 31(2): 740–747

    Article  Google Scholar 

  58. Romanian Waters National Administration (RWNA) (2013). Report on a Preliminary Flood Risk Assessment. Bucharest, Romania

    Google Scholar 

  59. Romanian Waters National Administration (RWNA) (2014). Hazard and Flood Risk Maps. Bucharest, Romania. Accessed at http://www. rowater.ro/HHHRI/HHHRI.aspx

    Google Scholar 

  60. Roo A D, Barredo J, Lavalle C, Bodis K, Bonk R (2007). Potential flood hazard and risk mapping at Pan-European scale. In: Peckham R J, Jordan G, eds. Digital Terrain Modelling Development and Applications in a Policy Support Environment. Berlin: Springer Berlin Heidelberg

    Google Scholar 

  61. Sandu I, Pescaru V I, Poiana I, Geicu A, Candea I, Tastea D (2008). The Climate of Romania (in Romanian). Bucharest: Romanian Academy Publishing

    Google Scholar 

  62. Shaban A, Khawlie M, Abdallah C (2006). Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeol J, 14(4): 433–443

    Article  Google Scholar 

  63. Shaban A, Khawlie M, Bou Kheir R, Abdallah C (2001). Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon–eastern Mediterranean. Bull Eng Geol Environ, 60(2): 93–101

    Article  Google Scholar 

  64. Smith G (2003). Flash flood potential: determining the hydrologic response of ffmp basins to heavy rain by analyzing their physiographic characteristics. A white paper available from the NWS Colorado Basin River Forecast Center. Accessed at http://www.cbrfc. noaa.gov/papers/ffp_wpap.pdf

    Google Scholar 

  65. Stocker B D, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Xu R, Prentice I C (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat Clim Chang, 3(7): 666–672

    Article  Google Scholar 

  66. Teodor S, Mătreaţă S (2011). A way of determining how small river basins of somes river are susceptible to flash-floods. Carpath J Earth Environ Sci, 6(1): 89–98

    Google Scholar 

  67. UNISDR (2009). United Nations International Strategy for Disaster Reduction–Terminology on Disaster Risk Reduction, Geneva, Switzerland

    Google Scholar 

  68. Valle Junior R F, Varandas S G P, Sanches Fernandes L F, Pacheco F A L (2014). Environmental land use conflicts: a threat to soil conservation. Land Use Policy, 41: 172–185

    Article  Google Scholar 

  69. Xiao B, Wang Q H, Fan J, Han F P, Dai Q H (2011). Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity. Pedosphere, 21(6): 738–749

    Article  Google Scholar 

  70. Young D F, Carleton J N (2006). Implementation of a probabilistic curve number method in the PRZM runoff model. Environ Model Softw, 21(8): 1172–1179

    Article  Google Scholar 

  71. Zaharia L (2005a). Waters, in Natural Hazards in the Carpathians and Subcarpathians located between Trotuş and Teleajen. In: Ars Docendi, Geographical Study (in Romanian). Ed. Bucharest, Romania, 47–59

    Google Scholar 

  72. Zaharia L (2005b). Study on water resources in the Curvature Carpathians and Subcarpathians in order to maximize their use for population supply in the counties adjoining the region (in Romanian). In: "Lucrări şi Rapoarte de Cercetare". Vol. I, Ed. Universităţii Bucureşti, Bucharest, Romania, 137–171

    Google Scholar 

  73. Zaharia L, Beltrando G (2007). Variabilité spatiale et temporelle de la pluviométrie dans la région de la Courbure de l’Arc Carpatique: étude par Analyse en Composantes Principales, Revue Roumaine de Géographie, Bucharest, Romania, 175–184

    Google Scholar 

  74. Zaharia L, Beltrando G, Nedelcu G, Boroneant C, Toroimac G (2006). Les inondations de 2005 en Roumanie. Actes du XIXeme Colloque International de Climatologie, 6–9 September, Epernay, France, 557–562

    Google Scholar 

  75. Zaharia L, Costache R, Prăvalie R, Minea G (2015). Assessment and mapping of flood potential in the Slănic catchment in Romania. J Earth Syst Sci, 124(6): 1311–1324

    Article  Google Scholar 

  76. Zaharia L, Grecu F, Toroimac G, Neculau G (2011). Sediment transport and river channel dynamics in Romania–Variability and control factors. In: Manning A J, ed. Sediment Transport in Aquatic Environments. InTech, 293–316

    Google Scholar 

  77. Zaharia L, Minea G, Toroimac G, Barbu R, Sârbu I (2012). Estimation of the Areas with Accelerated Surface Runoff in the Upper Prahova Watershed (Romanian Carpathians), Balwois, Republic of Macedonia. Accessed at http://ocs.balwois.com/index. php?conference =BALWOIS&schedConf = BW2012&page = paper

    Google Scholar 

  78. Zhan X, Huang M L (2004). ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps. Environ Model Softw, 19(10): 875–879

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank three anonymous reviewers for their valuable comments, which greatly improved the manuscript. We are also very grateful to Catherine Wilcow for thorough English proofreading.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romulus Costache.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaharia, L., Costache, R., Prăvălie, R. et al. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania). Front. Earth Sci. 11, 229–247 (2017). https://doi.org/10.1007/s11707-017-0636-1

Download citation

Keywords

  • flash-flood
  • flooding
  • Flash-flood/Flooding Potential Index
  • Prahova River catchment
  • Romania