Effect of snow on mountain river regimes: an example from the Pyrenees

Abstract

The purpose of this study was to characterize mountain river regimes in the Spanish Pyrenees and to assess the importance of snow accumulation and snowmelt on the timing of river flows. Daily streamflow data from 9 gauging stations in the Pyrenees were used to characterize river regimes. These data were analyzed by hydrological indices, with a focus on periods when snow accumulation and snowmelt occurred. These results were combined with data on Snow Water Equivalent (SWE) (from measurements of depth and density of snow in the main river basins and also simulated by a process-based hydrological model), snowmelting (simulated by a process-based hydrological model), precipitation (from observations), and temperature (from observations). Longitude and elevation gradients in the Pyrenees explain the transition of river regimes from those that mostly had low nival signals (in the west and at low elevations) to those that mostly had high nival signals (low winter runoff and late spring peakflow, in the east and at high elevations). Although trend analyses indicated no statistically significant changes, there was a trend of decreased nival signal over time in most of the analyzed rivers. Our results also demonstrated that snow processes cannot explain all of the interannual variability of river regimes, because the temporal distribution of liquid precipitation and temperature play key roles in hydrography.

This is a preview of subscription content, log in to check access.

References

  1. Adam J C, Hamlet A F, Lettenmaier D P (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Processes, 23(7): 962–972

    Article  Google Scholar 

  2. Auble G T, Friedman J M, Scott M L (1994). Relating riparian vegetation to present and future streamflows. Ecol Appl, 4(3): 544–554

    Article  Google Scholar 

  3. Bard A, Renard B, Lang M (2010). Observed trends in the hydrologic regime of Alpine catchments. In: EGU General Assembly Conference Abstracts, vol. 12, p. 11627

    Google Scholar 

  4. Barnett T P, Adam J C, Lettenmaier D P (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303–309

    Article  Google Scholar 

  5. Beguería S, López-Moreno J I, Lorente A, Seeger M, García-Ruiz J M (2003). Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio, 32 (4): 283–286

    Article  Google Scholar 

  6. Bejarano M D, Marchamalo M, de Jalón D G, del Tánago M G (2010). Flow regime patterns and their controlling factors in the Ebro basin (Spain). J Hydrol (Amst), 385(1): 323–335

    Article  Google Scholar 

  7. Beniston M (2012). Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang, 3(4): 349–358

    Article  Google Scholar 

  8. Burn D H (2008). Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J Hydrol (Amst), 352(1-2): 225–238

    Article  Google Scholar 

  9. Burn D H, Hag Elnur M A H (2002). Detection of hydrologic trends and variability. J Hydrol (Amst), 255(1): 107–122

    Article  Google Scholar 

  10. Camarasa-Belmonte A M, Soriano J (2014). Empirical study of extreme rainfall intensity in a semi-arid environment at different time scale. J Arid Environ, 100–101: 63–71

    Article  Google Scholar 

  11. Cayan D R (1996). Interannual climate variability and snowpack in the western United States. J Clim, 9(5): 928–948

    Article  Google Scholar 

  12. Cayan D R, Dettinger M D, Kammerdiener S A, Caprio J M, Peterson D H (2001). Changes in the onset of spring in the Western United States. Bull Am Meteorol Soc, 82(3): 399–415

    Article  Google Scholar 

  13. Chauvin G M, Flerchinger G N, Link T E, Marks D, Winstral A H, Seyfried M S (2011). Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrolology, 400 (1–2): 133–143

    Article  Google Scholar 

  14. Chen Z, Grasby S E (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrolology, 365(1–2): 122–133

    Article  Google Scholar 

  15. Clow DW (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306

    Article  Google Scholar 

  16. De Luis M, Brunetti M, Gonzalez-Hidalgo J C, Longares L A, Martin-Vide J (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global Planet Change, 74(1): 27–33

    Article  Google Scholar 

  17. Dedieu J P, Lessard-Fontaine A, Ravazzani G, Cremonese E, Shalpykova G, Beniston M (2014). Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci Total Environ, 493: 1267–1279

    Article  Google Scholar 

  18. Del Barrio G, Creus J, Puigdefábregas J (1990). Thermal seasonality of the high mountains belt of the Pyrenees. Mt Res Dev, 10(3): 227–233

    Article  Google Scholar 

  19. Foy C, Arabi M, Yen H, Gironás J, Bailey R T (2015). Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. J Hydrol Eng, 20 (10): 04015017

    Article  Google Scholar 

  20. Gaetani M, Baldi M, Dalu G A, Maracchi G (2011). Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci, 11(9): 2469–2481

    Article  Google Scholar 

  21. García-Ruiz J M, López-Moreno J I, Vicente-Serrano S M, Lasanta–Martínez T, Beguería S (2011). Mediterranean water resources in a global change scenario. Earth Sci Rev, 105(3-4): 121–139

    Article  Google Scholar 

  22. García-Ruiz J M, Puigdefábregas T J, Creus-Novau J (1985). Los recursos hídricos superficiales del Alto Aragón. Huesca: Instituto de Estudios Altoaragoneses

    Google Scholar 

  23. Godsey S E, Kirchner J W, Tague C L (2014). Effects of changes in winter snowpacks on summer low flows: case studies in the sierra nevada, California, USA. Hydrol Processes, 28(19): 5048–5064

    Article  Google Scholar 

  24. Herrera S, Gutiérrez J M, Ancell R, Pons M R, Frías M D, Fernández J (2012). Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol, 32(1): 74–85

    Article  Google Scholar 

  25. Hinch S G, Healey M C, Diewert R E, Henderson M A, Thomson K A, Hourston R, Juanes F (1995). Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can J Fish Aquat Sci, 52(12): 2651–2659

    Article  Google Scholar 

  26. Irannezhad M, Ronkanen A K, Kløve B (2015). Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg Sci Technol, 118: 14–29

    Article  Google Scholar 

  27. Jolliffe I (2002). Principal Component Analysis and Factor Analysis. Principal Component Analysis. Springer Series in Statistics, 150–166

    Google Scholar 

  28. Kaiser H F (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3): 187–200

    Article  Google Scholar 

  29. Kaiser H F (1974). An index of factorial simplicity. Psychometrika, 39 (1): 31–36

    Article  Google Scholar 

  30. Kendall M (1975). Multivariate Analysis. London: Charles Griffin

    Google Scholar 

  31. Kormann C, Francke T, Bronstert A (2015). Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. Journal of Water and Climate Change, 6 (1): 124–143

    Article  Google Scholar 

  32. Kormos P R, Marks D, McNamara J P, Marshall H P, Winstral A, Flores A N (2014). Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. Journal of Hydrolology, 519(PA): 190–204

    Article  Google Scholar 

  33. Kruskal W H, Wallis W A (1952). Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 47(260): 583–621

    Article  Google Scholar 

  34. Lana-Renault N, Alvera B, García-Ruiz J M (2011). Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arct Antarct Alp Res, 43(2): 213–222

    Article  Google Scholar 

  35. López R, Justribó C (2010). The hydrological significance of mountains: a regional case study, the Ebro River basin, northeast Iberian Peninsula. Hydrol Sci J, 55(2): 223–233

    Article  Google Scholar 

  36. López-Moreno J I (2005). Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res, 37(2): 253–260

    Article  Google Scholar 

  37. López-Moreno J I, Beniston M, García-Ruiz J M (2008). Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Global Planet Change, 61 (3): 300–312

    Article  Google Scholar 

  38. López-Moreno J I, Fassnacht S R, Beguería S, Latron J (2011b). Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 5(3): 617–629

    Article  Google Scholar 

  39. López-Moreno J I, Fassnacht S R, Heath J T, Musselman K N, Revuelto J, Latron J, Morán-Tejeda E, Jonas T (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent. Adv Water Resour, 55: 40–52

    Article  Google Scholar 

  40. López-Moreno J I, García-Ruiz J M (2004). Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J, 49(5) doi: 10.1623/hysj.49.5.787.55135

    Google Scholar 

  41. López-Moreno J I, Goyette S, Beniston M (2009). Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol (Amst), 374(3): 384–396

    Article  Google Scholar 

  42. López-Moreno J I, Vicente-Serrano S M, Morán-Tejeda E, Zabalza J, Lorenzo-Lacruz J, García-Ruiz J M (2011a). Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci, 15(1): 311–322

    Article  Google Scholar 

  43. López-Moreno J I, Revuelto J, Rico I, Chueca-Cía J, Julián A, Serreta A, Serrano E, Vicente-Serrano SM, Azorín-Molina C, Alonso-González E, García-Ruiz JM (2016). Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere, 10(2): 681–694

    Article  Google Scholar 

  44. López-Moreno J I, Vicente-Serrano S M, Zabalza J, Revuelto J, Gilaberte M, Azorín-Molina C, Morán-Tejeda E, García-Ruiz J M, Tague C (2014). Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. Pirineos, 169(0): e004

    Article  Google Scholar 

  45. Lute A C, Abatzoglou J T, Hegewisch K C (2015). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res, 51(2): 960–972

    Article  Google Scholar 

  46. Mann H B (1945). Nonparametric tests against trend. Econometrica, 13 (3): 245–259

    Article  Google Scholar 

  47. Mann H B, Whitney D R (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat, 18(1): 50–60

    Article  Google Scholar 

  48. Marti R, Gascoin S, Houet T, Ribière O, Laffly D, Condom T, Monnier S, Schmutz M, Camerlynck C, Tihay J P, Soubeyroux J M, René P (2015). Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere, 9(5): 1773–1795

    Article  Google Scholar 

  49. Masiokas M H, Villalba R, Luckman B H, Mauget S (2010). Intrato multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J Hydrometeorol, 11(3): 822–831

    Article  Google Scholar 

  50. Moore J N, Harper J T, Greenwood M C (2007). Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys Res Lett, 34(16) doi: 10.1029/2007GL031022

    Google Scholar 

  51. Morán-Tejeda E, Herrera S, López-Moreno J I, Revuelto J, Lehmann A, Beniston M (2013). Evolution and frequency (1970-2007) of combined temperature-precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg Environ Change, 13(4): 873–885

    Article  Google Scholar 

  52. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Ceballos-Barbancho A, Zabalza J, Vicente-Serrano S M (2012). Reservoir Management in the Duero Basin (Spain): impact on River Regimes and the Response to Environmental Change. Water Resour Manage, 26(8): 2125–2146

    Article  Google Scholar 

  53. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Rahman K, Beniston M (2014). Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol (Amst), 517: 1114–1127

    Article  Google Scholar 

  54. Morán-Tejeda E, Zabalza J, Rahman K, Gago-Silva A, López-Moreno J I, Vicente-Serrano S, Lehmann A, Tague C L, Beniston M (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology, 8(8): 1396–1416

    Article  Google Scholar 

  55. Peña J, Lozano M (2004). Las unidades del relieve aragonés, Geografía Física de Aragón, Aspectos Generales Y Temáticos. Zaragoza: Universidad de Zaragoza

    Google Scholar 

  56. Poff N, Brinson M M, Day J (2002). Aquatic ecosystems and global climate change. Arlington: Pew Center on Global Climate Change

    Google Scholar 

  57. Pradhanang S M, Frei A, Zion M, Schneiderman E M, Steenhuis T S, Pierson D (2013). Rain-on-snow runoff events in New York. Hydrol Processes, 27(21): 3035–3049

    Article  Google Scholar 

  58. Revuelto-Benedí J, López-Moreno J I, Morán-Tejada E, Fassnacht S R, Vicente-Serrano S M (2012). Variabilidad interanual del manto de nieve en el Pirineo: tendencias observadas y su relación con índices de teleconexión durante el periodo 1985-2011. In: 8° Congreso Internacional sobre Cambio climático, Extremos e Impactos. Salamanca: Asociación Española de Climatología, 613–621

    Google Scholar 

  59. Richman M B (1986). Rotation of principal components. J Climatol, 6 (3): 293–335

    Article  Google Scholar 

  60. Ryberg K R, Akyüz F A, Wiche G J, Lin W (2016). Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol Processes, 30(8): 1208–1218

    Article  Google Scholar 

  61. Sankey T, Donald J, McVay J, Ashley M, O’Donnell F, Lopez S M, Springer A (2015). Multi-scale analysis of snow dynamics at the southern margin of the North American continental snow distribution. Remote Sens Environ, 169: 307–319

    Article  Google Scholar 

  62. Schnorbus M, Werner A, Bennett K (2014). Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol Processes, 28(3): 1170–1189

    Article  Google Scholar 

  63. Singh P, Spitzbart G, Hübl H, Weinmeister H W (1997). Hydrological response of snowpack under rain-on-snow events: a field study. J Hydrol (Amst), 202(1): 1–20

    Article  Google Scholar 

  64. Stewart I T (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Processes, 23(1): 78–94

    Article  Google Scholar 

  65. Stewart I T, Cayan D R, Dettinger M D (2005). Changes toward Earlier Streamflow Timing acrossWestern North America. J Climatol, 18(8): 1136–1155

    Article  Google Scholar 

  66. Tuset J, Vericat D, Batalla R J (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci Total Environ, 540: 114–132

    Article  Google Scholar 

  67. Viviroli D, Dürr H H, Messerli B, Meybeck M, Weingartner R (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res, 43(7): doi: 10.1029/2006WR005653

    Google Scholar 

  68. Ward J H Jr (1963). Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc, 58(301): 236–244

    Article  Google Scholar 

  69. Whitaker A C, Sugiyama H, Hayakawa K (2008). Effect of snow cover conditions on the hydrologic regime: case study in a pluvial-nival watershed, Japan. J Am Water Resour Assoc, 44(4): 814–828

    Article  Google Scholar 

  70. Wu Z, Huang N E, Long S R, Peng C K (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104(38): 14889–14894

    Article  Google Scholar 

  71. Yamanaka T, Wakiyama Y, Suzuki K (2012). Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrological Research Letters, 6(0): 87–91

    Article  Google Scholar 

  72. Yang D, Zhao Y, Armstrong R, Robinson D (2009). Yukon River streamflow response to seasonal snow cover changes. Hydrol Processes, 23(1): 109–121

    Article  Google Scholar 

  73. Yue S, Pilon P, Cavadias G (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol (Amst), 259(1): 254–271

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the research project CGL2014-52599-P, “Estudio del manto de nieve en la montaña española y su respuesta a la variabilidad y cambio climatico” from the Spanish Ministry of Economy and Competitiveness. The authors thank the ERHIN program for providing the snow data used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alba Sanmiguel-Vallelado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sanmiguel-Vallelado, A., Morán-Tejeda, E., Alonso-González, E. et al. Effect of snow on mountain river regimes: an example from the Pyrenees. Front. Earth Sci. 11, 515–530 (2017). https://doi.org/10.1007/s11707-016-0630-z

Download citation

Keywords

  • river regime
  • precipitation
  • snow indices
  • Spanish Pyrenees
  • streamflow