Frontiers of Earth Science

, Volume 11, Issue 3, pp 515–530 | Cite as

Effect of snow on mountain river regimes: an example from the Pyrenees

  • Alba Sanmiguel-Vallelado
  • Enrique Morán-Tejeda
  • Esteban Alonso-González
  • Juan Ignacio López-Moreno
Research Article

Abstract

The purpose of this study was to characterize mountain river regimes in the Spanish Pyrenees and to assess the importance of snow accumulation and snowmelt on the timing of river flows. Daily streamflow data from 9 gauging stations in the Pyrenees were used to characterize river regimes. These data were analyzed by hydrological indices, with a focus on periods when snow accumulation and snowmelt occurred. These results were combined with data on Snow Water Equivalent (SWE) (from measurements of depth and density of snow in the main river basins and also simulated by a process-based hydrological model), snowmelting (simulated by a process-based hydrological model), precipitation (from observations), and temperature (from observations). Longitude and elevation gradients in the Pyrenees explain the transition of river regimes from those that mostly had low nival signals (in the west and at low elevations) to those that mostly had high nival signals (low winter runoff and late spring peakflow, in the east and at high elevations). Although trend analyses indicated no statistically significant changes, there was a trend of decreased nival signal over time in most of the analyzed rivers. Our results also demonstrated that snow processes cannot explain all of the interannual variability of river regimes, because the temporal distribution of liquid precipitation and temperature play key roles in hydrography.

Keywords

river regime precipitation snow indices Spanish Pyrenees streamflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was funded by the research project CGL2014-52599-P, “Estudio del manto de nieve en la montaña española y su respuesta a la variabilidad y cambio climatico” from the Spanish Ministry of Economy and Competitiveness. The authors thank the ERHIN program for providing the snow data used in this study.

References

  1. Adam J C, Hamlet A F, Lettenmaier D P (2009). Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol Processes, 23(7): 962–972CrossRefGoogle Scholar
  2. Auble G T, Friedman J M, Scott M L (1994). Relating riparian vegetation to present and future streamflows. Ecol Appl, 4(3): 544–554CrossRefGoogle Scholar
  3. Bard A, Renard B, Lang M (2010). Observed trends in the hydrologic regime of Alpine catchments. In: EGU General Assembly Conference Abstracts, vol. 12, p. 11627Google Scholar
  4. Barnett T P, Adam J C, Lettenmaier D P (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066): 303–309CrossRefGoogle Scholar
  5. Beguería S, López-Moreno J I, Lorente A, Seeger M, García-Ruiz J M (2003). Assessing the effect of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio, 32 (4): 283–286CrossRefGoogle Scholar
  6. Bejarano M D, Marchamalo M, de Jalón D G, del Tánago M G (2010). Flow regime patterns and their controlling factors in the Ebro basin (Spain). J Hydrol (Amst), 385(1): 323–335CrossRefGoogle Scholar
  7. Beniston M (2012). Is snow in the Alps receding or disappearing? Wiley Interdiscip Rev Clim Chang, 3(4): 349–358CrossRefGoogle Scholar
  8. Burn D H (2008). Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J Hydrol (Amst), 352(1-2): 225–238CrossRefGoogle Scholar
  9. Burn D H, Hag Elnur M A H (2002). Detection of hydrologic trends and variability. J Hydrol (Amst), 255(1): 107–122CrossRefGoogle Scholar
  10. Camarasa-Belmonte A M, Soriano J (2014). Empirical study of extreme rainfall intensity in a semi-arid environment at different time scale. J Arid Environ, 100–101: 63–71CrossRefGoogle Scholar
  11. Cayan D R (1996). Interannual climate variability and snowpack in the western United States. J Clim, 9(5): 928–948CrossRefGoogle Scholar
  12. Cayan D R, Dettinger M D, Kammerdiener S A, Caprio J M, Peterson D H (2001). Changes in the onset of spring in the Western United States. Bull Am Meteorol Soc, 82(3): 399–415CrossRefGoogle Scholar
  13. Chauvin G M, Flerchinger G N, Link T E, Marks D, Winstral A H, Seyfried M S (2011). Long-term water balance and conceptual model of a semi-arid mountainous catchment. Journal of Hydrolology, 400 (1–2): 133–143CrossRefGoogle Scholar
  14. Chen Z, Grasby S E (2009). Impact of decadal and century-scale oscillations on hydroclimate trend analyses. Journal of Hydrolology, 365(1–2): 122–133CrossRefGoogle Scholar
  15. Clow DW (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306CrossRefGoogle Scholar
  16. De Luis M, Brunetti M, Gonzalez-Hidalgo J C, Longares L A, Martin-Vide J (2010). Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global Planet Change, 74(1): 27–33CrossRefGoogle Scholar
  17. Dedieu J P, Lessard-Fontaine A, Ravazzani G, Cremonese E, Shalpykova G, Beniston M (2014). Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci Total Environ, 493: 1267–1279CrossRefGoogle Scholar
  18. Del Barrio G, Creus J, Puigdefábregas J (1990). Thermal seasonality of the high mountains belt of the Pyrenees. Mt Res Dev, 10(3): 227–233CrossRefGoogle Scholar
  19. Foy C, Arabi M, Yen H, Gironás J, Bailey R T (2015). Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. J Hydrol Eng, 20 (10): 04015017CrossRefGoogle Scholar
  20. Gaetani M, Baldi M, Dalu G A, Maracchi G (2011). Jetstream and rainfall distribution in the Mediterranean region. Nat Hazards Earth Syst Sci, 11(9): 2469–2481CrossRefGoogle Scholar
  21. García-Ruiz J M, López-Moreno J I, Vicente-Serrano S M, Lasanta–Martínez T, Beguería S (2011). Mediterranean water resources in a global change scenario. Earth Sci Rev, 105(3-4): 121–139CrossRefGoogle Scholar
  22. García-Ruiz J M, Puigdefábregas T J, Creus-Novau J (1985). Los recursos hídricos superficiales del Alto Aragón. Huesca: Instituto de Estudios AltoaragonesesGoogle Scholar
  23. Godsey S E, Kirchner J W, Tague C L (2014). Effects of changes in winter snowpacks on summer low flows: case studies in the sierra nevada, California, USA. Hydrol Processes, 28(19): 5048–5064CrossRefGoogle Scholar
  24. Herrera S, Gutiérrez J M, Ancell R, Pons M R, Frías M D, Fernández J (2012). Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol, 32(1): 74–85CrossRefGoogle Scholar
  25. Hinch S G, Healey M C, Diewert R E, Henderson M A, Thomson K A, Hourston R, Juanes F (1995). Potential effects of climate change on marine growth and survival of Fraser River sockeye salmon. Can J Fish Aquat Sci, 52(12): 2651–2659CrossRefGoogle Scholar
  26. Irannezhad M, Ronkanen A K, Kløve B (2015). Effects of climate variability and change on snowpack hydrological processes in Finland. Cold Reg Sci Technol, 118: 14–29CrossRefGoogle Scholar
  27. Jolliffe I (2002). Principal Component Analysis and Factor Analysis. Principal Component Analysis. Springer Series in Statistics, 150–166Google Scholar
  28. Kaiser H F (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3): 187–200CrossRefGoogle Scholar
  29. Kaiser H F (1974). An index of factorial simplicity. Psychometrika, 39 (1): 31–36CrossRefGoogle Scholar
  30. Kendall M (1975). Multivariate Analysis. London: Charles GriffinGoogle Scholar
  31. Kormann C, Francke T, Bronstert A (2015). Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria. Journal of Water and Climate Change, 6 (1): 124–143CrossRefGoogle Scholar
  32. Kormos P R, Marks D, McNamara J P, Marshall H P, Winstral A, Flores A N (2014). Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone. Journal of Hydrolology, 519(PA): 190–204CrossRefGoogle Scholar
  33. Kruskal W H, Wallis W A (1952). Use of ranks in one-criterion variance analysis. J Am Stat Assoc, 47(260): 583–621CrossRefGoogle Scholar
  34. Lana-Renault N, Alvera B, García-Ruiz J M (2011). Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arct Antarct Alp Res, 43(2): 213–222CrossRefGoogle Scholar
  35. López R, Justribó C (2010). The hydrological significance of mountains: a regional case study, the Ebro River basin, northeast Iberian Peninsula. Hydrol Sci J, 55(2): 223–233CrossRefGoogle Scholar
  36. López-Moreno J I (2005). Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res, 37(2): 253–260CrossRefGoogle Scholar
  37. López-Moreno J I, Beniston M, García-Ruiz J M (2008). Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Global Planet Change, 61 (3): 300–312CrossRefGoogle Scholar
  38. López-Moreno J I, Fassnacht S R, Beguería S, Latron J (2011b). Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies. Cryosphere, 5(3): 617–629CrossRefGoogle Scholar
  39. López-Moreno J I, Fassnacht S R, Heath J T, Musselman K N, Revuelto J, Latron J, Morán-Tejeda E, Jonas T (2013). Small scale spatial variability of snow density and depth over complex alpine terrain: implications for estimating snow water equivalent. Adv Water Resour, 55: 40–52CrossRefGoogle Scholar
  40. López-Moreno J I, García-Ruiz J M (2004). Influence of snow accumulation and snowmelt on streamflow in the central Spanish Pyrenees. Hydrol Sci J, 49(5) doi: 10.1623/hysj.49.5.787.55135Google Scholar
  41. López-Moreno J I, Goyette S, Beniston M (2009). Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol (Amst), 374(3): 384–396CrossRefGoogle Scholar
  42. López-Moreno J I, Vicente-Serrano S M, Morán-Tejeda E, Zabalza J, Lorenzo-Lacruz J, García-Ruiz J M (2011a). Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci, 15(1): 311–322CrossRefGoogle Scholar
  43. López-Moreno J I, Revuelto J, Rico I, Chueca-Cía J, Julián A, Serreta A, Serrano E, Vicente-Serrano SM, Azorín-Molina C, Alonso-González E, García-Ruiz JM (2016). Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981. Cryosphere, 10(2): 681–694CrossRefGoogle Scholar
  44. López-Moreno J I, Vicente-Serrano S M, Zabalza J, Revuelto J, Gilaberte M, Azorín-Molina C, Morán-Tejeda E, García-Ruiz J M, Tague C (2014). Respuesta hidrológica del Pirineo central al cambio ambiental proyectado para el siglo XXI. Pirineos, 169(0): e004CrossRefGoogle Scholar
  45. Lute A C, Abatzoglou J T, Hegewisch K C (2015). Projected changes in snowfall extremes and interannual variability of snowfall in the western United States. Water Resour Res, 51(2): 960–972CrossRefGoogle Scholar
  46. Mann H B (1945). Nonparametric tests against trend. Econometrica, 13 (3): 245–259CrossRefGoogle Scholar
  47. Mann H B, Whitney D R (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat, 18(1): 50–60CrossRefGoogle Scholar
  48. Marti R, Gascoin S, Houet T, Ribière O, Laffly D, Condom T, Monnier S, Schmutz M, Camerlynck C, Tihay J P, Soubeyroux J M, René P (2015). Evolution of Ossoue Glacier (French Pyrenees) since the end of the Little Ice Age. Cryosphere, 9(5): 1773–1795CrossRefGoogle Scholar
  49. Masiokas M H, Villalba R, Luckman B H, Mauget S (2010). Intrato multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30° and 37°S. J Hydrometeorol, 11(3): 822–831CrossRefGoogle Scholar
  50. Moore J N, Harper J T, Greenwood M C (2007). Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States. Geophys Res Lett, 34(16) doi: 10.1029/2007GL031022Google Scholar
  51. Morán-Tejeda E, Herrera S, López-Moreno J I, Revuelto J, Lehmann A, Beniston M (2013). Evolution and frequency (1970-2007) of combined temperature-precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg Environ Change, 13(4): 873–885CrossRefGoogle Scholar
  52. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Ceballos-Barbancho A, Zabalza J, Vicente-Serrano S M (2012). Reservoir Management in the Duero Basin (Spain): impact on River Regimes and the Response to Environmental Change. Water Resour Manage, 26(8): 2125–2146CrossRefGoogle Scholar
  53. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno J I, Rahman K, Beniston M (2014). Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol (Amst), 517: 1114–1127CrossRefGoogle Scholar
  54. Morán-Tejeda E, Zabalza J, Rahman K, Gago-Silva A, López-Moreno J I, Vicente-Serrano S, Lehmann A, Tague C L, Beniston M (2015). Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology, 8(8): 1396–1416CrossRefGoogle Scholar
  55. Peña J, Lozano M (2004). Las unidades del relieve aragonés, Geografía Física de Aragón, Aspectos Generales Y Temáticos. Zaragoza: Universidad de ZaragozaGoogle Scholar
  56. Poff N, Brinson M M, Day J (2002). Aquatic ecosystems and global climate change. Arlington: Pew Center on Global Climate ChangeGoogle Scholar
  57. Pradhanang S M, Frei A, Zion M, Schneiderman E M, Steenhuis T S, Pierson D (2013). Rain-on-snow runoff events in New York. Hydrol Processes, 27(21): 3035–3049CrossRefGoogle Scholar
  58. Revuelto-Benedí J, López-Moreno J I, Morán-Tejada E, Fassnacht S R, Vicente-Serrano S M (2012). Variabilidad interanual del manto de nieve en el Pirineo: tendencias observadas y su relación con índices de teleconexión durante el periodo 1985-2011. In: 8° Congreso Internacional sobre Cambio climático, Extremos e Impactos. Salamanca: Asociación Española de Climatología, 613–621Google Scholar
  59. Richman M B (1986). Rotation of principal components. J Climatol, 6 (3): 293–335CrossRefGoogle Scholar
  60. Ryberg K R, Akyüz F A, Wiche G J, Lin W (2016). Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol Processes, 30(8): 1208–1218CrossRefGoogle Scholar
  61. Sankey T, Donald J, McVay J, Ashley M, O’Donnell F, Lopez S M, Springer A (2015). Multi-scale analysis of snow dynamics at the southern margin of the North American continental snow distribution. Remote Sens Environ, 169: 307–319CrossRefGoogle Scholar
  62. Schnorbus M, Werner A, Bennett K (2014). Impacts of climate change in three hydrologic regimes in British Columbia, Canada. Hydrol Processes, 28(3): 1170–1189CrossRefGoogle Scholar
  63. Singh P, Spitzbart G, Hübl H, Weinmeister H W (1997). Hydrological response of snowpack under rain-on-snow events: a field study. J Hydrol (Amst), 202(1): 1–20CrossRefGoogle Scholar
  64. Stewart I T (2009). Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Processes, 23(1): 78–94CrossRefGoogle Scholar
  65. Stewart I T, Cayan D R, Dettinger M D (2005). Changes toward Earlier Streamflow Timing acrossWestern North America. J Climatol, 18(8): 1136–1155CrossRefGoogle Scholar
  66. Tuset J, Vericat D, Batalla R J (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Sci Total Environ, 540: 114–132CrossRefGoogle Scholar
  67. Viviroli D, Dürr H H, Messerli B, Meybeck M, Weingartner R (2007). Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res, 43(7): doi: 10.1029/2006WR005653Google Scholar
  68. Ward J H Jr (1963). Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc, 58(301): 236–244CrossRefGoogle Scholar
  69. Whitaker A C, Sugiyama H, Hayakawa K (2008). Effect of snow cover conditions on the hydrologic regime: case study in a pluvial-nival watershed, Japan. J Am Water Resour Assoc, 44(4): 814–828CrossRefGoogle Scholar
  70. Wu Z, Huang N E, Long S R, Peng C K (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA, 104(38): 14889–14894CrossRefGoogle Scholar
  71. Yamanaka T, Wakiyama Y, Suzuki K (2012). Is snowmelt runoff timing in the Japanese Alps region shifting toward earlier in the year? Hydrological Research Letters, 6(0): 87–91CrossRefGoogle Scholar
  72. Yang D, Zhao Y, Armstrong R, Robinson D (2009). Yukon River streamflow response to seasonal snow cover changes. Hydrol Processes, 23(1): 109–121CrossRefGoogle Scholar
  73. Yue S, Pilon P, Cavadias G (2002). Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol (Amst), 259(1): 254–271CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Alba Sanmiguel-Vallelado
    • 1
  • Enrique Morán-Tejeda
    • 1
    • 2
  • Esteban Alonso-González
    • 1
  • Juan Ignacio López-Moreno
    • 1
  1. 1.Pyrenean Institute of EcologyCSIC (Spanish Research Council)ZaragozaSpain
  2. 2.Department of GeographyUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations