Advertisement

Frontiers of Earth Science

, Volume 12, Issue 1, pp 191–214 | Cite as

Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China

  • Xin Sha
  • Jinrong Wang
  • Wanfeng Chen
  • Zheng Liu
  • Xinwei Zhai
  • Jinlong Ma
  • Shuhua Wang
Research Article
  • 31 Downloads

Abstract

The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites (~302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites (~246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites (~235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites (~229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at ~ 302 Ma. This subduction process continued to the Early Triassic (~246 Ma) and the basin was finally closed before the Middle Triassic (~235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240–230 Ma).

Keywords

Paleo-Asian Ocean Alxa granite geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

During the research work, we appreciated advice from Senior Engineer Yang Bin of the Gansu Province Geology and Mining Bureau and Zhang Xiang, Engineer, of Gansu Province Geological Survey. We thank the editors and anonymous reviewers for comments that greatly improved the presentation of the paper. Thanks to Shuangshuang Wang for the help during the laboratory work. This study was supported by the National Natural Science Foundation of China (Grant No. 41173014), the Central Universities Fundamental Research Project (Lzu-Jbky-2012-128), and Gansu Key Laboratory of Mineral Resources in Western China (Lanzhou University) funded project.

References

  1. Annikova I Y, Vladimirov A G, Vystavnoi S A (2006). U-Pb, 39Ar/40Ar age determination and Sm-Nd, Pb-Pb isotope data for the Kalgut a Mo-W ore-magmatic system (South Altai, Russia). Петрология, 14 (1): 90–108 (in Russian)Google Scholar
  2. Atherton M P, Petford N (1993). Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362(6416): 144–146CrossRefGoogle Scholar
  3. Bao Q Z, Zhang C J, Wu Z L, Wang H, Li W, Sang J H, Liu Y S (2007). Zircon SHRIMP U-Pb dating of granitoids in a Late Paleozoic rift area, southeastern Inner Mongolia, and its implications. Geology in China, 34(5): 790–798 (in Chinese)Google Scholar
  4. Belousova E, Griffin W L, O’Reilly S Y, Fisher N L (2002). Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 143(5): 602–622CrossRefGoogle Scholar
  5. Budnikov S V, Kovalenko V I, Kotov A B (1999). The age and sources of the Hangay batholiths (Central Mongolia), in: IGCP-420. Continental Growth in the Phanerozoic: Evidence from Central Asia. Rennes: Second workshop. Abstracts and Excursion Guidebook Geosciences, 11–12Google Scholar
  6. Castillo P R, Janney P E, Solidum R U (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol, 134(1): 33–51CrossRefGoogle Scholar
  7. Chappell BW, White A J R (1974). Two contrasting granite type. Pacific Geology, 8:173–174Google Scholar
  8. Charvet J, Shu L S, Laurent-Charvet S (2007). Paleozoic structural and geodynamic evolution of eastern Tianshan (NW China): welding of the Tarim and Junggar plates. Episodes, 30(3): 162–186Google Scholar
  9. Charvet J, Shu L S, Laurent-Charvet S, Wang B, Faure M, Cluzel D, Chen Y, De Jong K (2011). Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54(2): 166–184CrossRefGoogle Scholar
  10. Chen B, Jahn B M (2004). Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence. J Asian Earth Sci, 23(5): 691–703CrossRefGoogle Scholar
  11. Chen B, Jahn B M, Tian W (2009). Evolution of the Solonker suture zone: constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and collision related magmas and forearc sediments. J Asian Earth Sci, 34(3): 245–257CrossRefGoogle Scholar
  12. Chen C M, Lu H F, Jia D, Cai D S, Wu S M (1999). Closing history of the southern Tianshan oceanic basin, western China: an oblique collisional orogeny. Tectonophysics, 302(1–2): 23–40CrossRefGoogle Scholar
  13. Defant M J, Maury R C, Ripley E M, Feigenson M D, Jacques D (1991). An example of island-arc petrogenesis: geochemistry and petrology of the southern Luzon arc, Philippines. J Petrol, 32(3): 455–500CrossRefGoogle Scholar
  14. Douce A E P, Beard J S (1995). Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol, 36(3): 707–738CrossRefGoogle Scholar
  15. Drummond M S, Defant M J (1990). A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research: Solid Earth (1978–2012), 95 (B13): 21503–21521CrossRefGoogle Scholar
  16. Drummond M S, Defant M J, Kepezhinskas P K (1996). Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Trans R Soc Edinb Earth Sci, 87(1–2): 205–215CrossRefGoogle Scholar
  17. Feng J Y, Xiao W J, Windley B, Han C M, Wan B, Zhang J E, Ao S J, Zhang Z Y, Lin L N (2013). Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: implications for Late Permian accretionary tectonics in the southern Altaids. J Asian Earth Sci, 78: 114–142CrossRefGoogle Scholar
  18. Gao J, John T, Klemd R, Xiong X M (2007). Mobilization of Ti-Nb-Ta during subduction: evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim Cosmochim Acta, 71(20): 4974–4996CrossRefGoogle Scholar
  19. Gao J, Klemd R (2003). Formation of HP-LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos, 66(1–2): 1–22CrossRefGoogle Scholar
  20. Gao J, Li M S, Xiao X C, Tang Y Q, He G Q (1998). Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287(1): 213–231CrossRefGoogle Scholar
  21. Gao J, Long L, Klemd R, Qian Q, Liu D, Xiong X, Su W, Liu W, Wang Y, Yang F (2009). Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: geochemical and age constraints of granitoid rocks. Int J Earth Sci, 98(6): 1221–1238CrossRefGoogle Scholar
  22. Ge X H, Ma W P, Liu J L, Ren S M, Liu Y J, Yuan S H, Wang M P (2009). A discussion on the tectonic framework of Chinese mainland. Geology in china, 36 (5): 949–965 (in Chinese)Google Scholar
  23. Geng Y S, Wang X S, Shen Q H, Wu C M (2007). Chronology of the Precambrian metamorphic series in the Alxa area, Inner Mongolia. Geology in China., 34(2): 251–261 (in Chinese)Google Scholar
  24. Geng Y S, Zhou X W (2010). Early Neoproterozoic granite events in Alxa area of Inner Mongolia and their geological significance: evidence from geochronology. Acta Petrologica et Mineralogical, 29 (6): 779–795Google Scholar
  25. Geng Y S, Zhou XW (2011). Characteristics of geochemistry and zircon Hf isotope of the Early Neoproterozoic granite in Alxa area, Inner Mongolia. Acta Petrologica Sinica, 27(4): 897–908Google Scholar
  26. Geng Y S, Zhou X W (2012). Early Permian magmatic events in the Alxa metamorphic basement: evidence from geochronology. Acta Petrologica Sinica, 28(9): 2667–2685Google Scholar
  27. Gong J H, Zhang J X, Yu S Y (2013). Redefinition of the Longshoushan Group outcropped in the eastern segment of Longshoushan on the southern margin of Alxa Block: evidence from detrital zircon U-Pb dating results. Acta Petrologica et Mineralogical., 32(1): 1–22Google Scholar
  28. Gong J H, Zhang J X, Yu S Y, Li H K, Hou K J, (2012). 2.5 Ga TTG rocks in the western Alxa Block and their implications. Chin Sci Bull, 57(31): 4064–4076CrossRefGoogle Scholar
  29. Govindaraju G (1994). Compilation of working values and sample description for 383 geostandards. Geostand Newsl, 18: 1–158CrossRefGoogle Scholar
  30. Han B F, Guo Z J, He G Q (2010a). Timing of major suture zones in North Xinjiang, China: constraints from stitching plutons. Acta Petrologica Sinica, 26(8): 2233–2246Google Scholar
  31. Han B F, Guo Z J, Zhang Z C, Zhang L, Chen J F, Song B (2010b). Age, geochemistry, and tectonic implications of a late Paleozoic stitching pluton in the North Tian Shan suture zone, western China. Geol Soc Am Bull, 122(3–4): 627–640CrossRefGoogle Scholar
  32. Han B F, He G Q, Wang X C, Guo Z J (2011). Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China. Earth Sci Rev, 109(3–4): 74–93CrossRefGoogle Scholar
  33. Han B F, Zhang C, Zhao L, Ren R, Xu Z, Chen J f, Zhang L, Zhou Y Z, Song B (2010c). A preliminary study of granitoids in western Inner Mongolia. Acta Petrologica et Mineralogical, 29(6): 741–749Google Scholar
  34. Hegner E, Klemd R, Kröner A, Corsini M, Alexeiev D V, Iaccheri L M, Zack T, Dulski P, Xia X, Windley B F (2010). Mineral ages and PT conditions of Late Paleozoic high-pressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan. Am J Sci, 310(9): 916–950CrossRefGoogle Scholar
  35. Hou Z Q, Gao Y F, Meng X J, Qu X M, Huang W (2004). Genesis of adakitic porphyry and tectonic controls on the Gangdese Miocene Porphyry copper belt in the Tibetan orogen. Acta Petrologica Sinica, 20(2): 239–248Google Scholar
  36. Jahn B M, Capdevila R, Liu D, Vernon A, Badarch G (2004). Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J Asian Earth Sci, 23(5): 629–653CrossRefGoogle Scholar
  37. Jahn B M, Litvinovsky B A, Zanvilevich A N, Reichow M (2009). Peralkaline granitoid magmatism in the Mongolian Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos, 113 (3–4): 521–539CrossRefGoogle Scholar
  38. Kay S M, Mpodozis C (2001). Central Andes ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11(3): 4–9CrossRefGoogle Scholar
  39. Kay S M, Ramos V A, Marquez M (1993). Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J Geol, 101(6): 703–714CrossRefGoogle Scholar
  40. Kozakov I K, Bibikova E V, Kovalenko V I (1997). U-Pb Age of Granitoids Located within the Southern Slope of the Caledonides, Mongolian Altai. Dokl Earth Sci, 353a: 338–340Google Scholar
  41. Li D P, Chen Y L, Wang Z, Lin Y, Zhou J (2012). Paleozoic sedimentary record of the Xing-Meng Orogenic Belt, Inner Mongolia: implications for the provenances and tectonic evolution of the Central Asian Orogenic Belt. Chin Sci Bull, 57(7): 776–785CrossRefGoogle Scholar
  42. Li H Q, Chen FW, Li J Y, QuW J, Wang D H, Wu H, Deng G, Mei Y P (2006a). Age of mineralization and host rocks in the Baishan rhenium-molybdenum district, East Tianshan, Xinjiang, China: revisited. Geological Bulletin of China, 25(8): 916–922Google Scholar
  43. Li J Y, Gao L M, Sun G H (2007). Shuangjingzi middle Triassic syncollisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino- Korean paleo-plates. Acta Petrologica Sinica, 23(3): 565–582Google Scholar
  44. Li J Y, Yang T N, Li Y P, Zhu Z X (2009). Geological features of the Karamaili faulting belt, eastern Junggar region, Xinjiang, China and its constraints on the reconstruction of Late Paleozoic oceancontinental framework of the Central Asian region. Geological Bulletin of China, 28(12): 1817–1826Google Scholar
  45. Li P W, Gao R, Guan Y, Li Q S (2006b). Palaeomagnetic constraints on the final closure time of Solonker Linxi Suture. Journal of Jilin University (Earth Science Edition), 36(5): 744–758Google Scholar
  46. Li S, Wang T, Tong Y (2010). Spatial-temporal distribution and tectonic settings of Early Mesozoic granitoids in the middle south segment of the Central Asia Orogenic System. Acta Petrologica et Mineralogica, 29(6): 642–662Google Scholar
  47. Li X H (1997). Geochemistry of the Longsheng ophiolite from the southern margin of Yangtze craton, SE China. Geochem J, 31(5): 323–337CrossRefGoogle Scholar
  48. Li Y J, Sun L D, Wu H R, Zhang G Y, Wang G L, Huang Z B (2005). Permo-Carboniferous Radiolarians from the Wupata’erkan Group, Western South Tianshan, Xinjiang, China. Acta Geologica Sinica- English Edition, 79(1): 16–23CrossRefGoogle Scholar
  49. Li Y J, Wang Z M, Wu H R, Hang Z B, Tan Z J, Luo J C (2002). Discovery of Radiolarian Fossils from the Aiketik Group at the western end of the South Tianshan Mountains of China and its implications. Acta Geologica Sinica-English Edition, 76(2): 146–154Google Scholar
  50. Lin L, Xiao W, Wan B, Windley B, Ao S, Han C, Feng J, Zhang J, Zhang Z (2014). Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, Langshan area, Inner Mongolia (China): significance for termination of accretionary orogenesis in the southern Altaids. Am J Sci, 314(2): 679–703CrossRefGoogle Scholar
  51. Liu J F, Chi X G, Zhang X Z, Ma Z H, Zhao Z, Wang T F, Hu Z C, Zhao X Y (2009). Geochemical characteristic of carboniferous quartzdiorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance. Acta Geol Sin, 83(3): 365–376 (in Chinese)Google Scholar
  52. Liu Y, Liu XM, Hu Z C, Diwu C R, Yuan H L, Gao S (2007). Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrologica Sinica, 23(5): 1203–1210Google Scholar
  53. Ma Y S, Zeng Q L, Song B, Du J J, Yang F Q, Zhao Y (2007). SHRIMP U-Pb dating of zircon from Panshan granitoid pluton in Yanshan orogenic belt and its tectonic implications. Acta Petrologica Sinica, 23(3): 547–556Google Scholar
  54. Macpherson C G, Dreher S T, Thirlwall M F (2006). Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett, 243(3–4): 581–593CrossRefGoogle Scholar
  55. Maniar P D, Piccoli P M (1989). Tectonic discrimination of granitoids. Geol Soc Am Bull, 101(5): 635–643CrossRefGoogle Scholar
  56. Mao Q, Xiao W, Fang T, Wang J, Han C, Sun M, Yuan C (2012). Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China: implications for early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Res, 22(2): 534–553CrossRefGoogle Scholar
  57. Martin H (1999). Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3): 411–429CrossRefGoogle Scholar
  58. Miao L C, Fan W M, Liu D Y, Zhang F Q, Shi Y R, Guo F (2008). Geochronology and geochemistry of the Hegenshan ophiolitic complex: implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. J Asian Earth Sci, 32 (5–6): 348–370CrossRefGoogle Scholar
  59. Middlemost E A K (1985). Magmas and Magmatic Rocks. London: Longman, 1–266Google Scholar
  60. Muir R J, Weaver S D, Bradshaw J D, Eby G N, Evans J A (1995). The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J Geol Soc London, 152(4): 689–701CrossRefGoogle Scholar
  61. Nash W P, Crecraft H R (1985). Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta, 49(11): 2309–2322CrossRefGoogle Scholar
  62. Orolmaa D, Erdenesaihan G, Borisenko A S, Fedoseev G S, Babich V V, Zhmodik S M (2008). Permian Triassic granitoid magmatism and metallogeny of the Hangayn (central Mongolia). Russ Geol Geophys, 49(7): 534–544CrossRefGoogle Scholar
  63. Pavlova G G, Borisenko A S, Goverdovskii V A, Travin A V, Zhukova I A, Tret’yakova I G (2008). Permian Triassic magmatism and Ag-Sb mineralization in southeastern Altai and northwestern Mongolia. Russ Geol Geophys, 49(7): 545–555CrossRefGoogle Scholar
  64. Pearce J A, Harris N B W, Tindle A G (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol, 25(4): 956–983CrossRefGoogle Scholar
  65. Peccerillo R, Taylor S R (1976). Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol, 58(1): 63–81CrossRefGoogle Scholar
  66. Rapp R P (1997). Heterogenous source regions for Archean granitoids. In: Wit M J, Ashwal L D, eds. Greenstone Belt. Oxford: Oxford University Press, 35–37Google Scholar
  67. Rapp R P, Shimizu N, Norman M D, Applegate G (1999). Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 160(4): 335–356CrossRefGoogle Scholar
  68. Richards J P, Kerrich R (2007). Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol, 102(4): 537–576CrossRefGoogle Scholar
  69. Rubatto D, Hermann J (2003). Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta, 67(12): 2173–2187CrossRefGoogle Scholar
  70. Sen C, Dunn T (1994). Dehydration melting of a basaltic composition amphibolites at 1.5 and 2.0 GPa: implications for the origin of adakite. Contrib Mineral Petrol, 117(4): 394–409CrossRefGoogle Scholar
  71. Shi Y R, Liu D Y, Zhang Q, Jian P, Zhang F Q, Miao L C, Shi G H, Zhang L Q, Tao H (2004). SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia. Acta Geol Sin, 78(6): 789–799Google Scholar
  72. Song S, Niu Y, Su L, Xia X (2013). Tectonics of the North Qilian orogen, NW China. Gondwana Res, 23(4): 1378–1401CrossRefGoogle Scholar
  73. Sun S S, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42: 313–345CrossRefGoogle Scholar
  74. Tao J X, Hu F X, Chen Z Y (2003). Characteristics and tectonic setting of Indosinian S-type granites in the northern margin of North China landmass. Acta Petrologica et Mineralogical, 20(2): 112–118Google Scholar
  75. Tian Z, Xiao W, Shan Y, Windley B, Han C, Zhang J E, Song D (2013). Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. J Struct Geol, 52: 119–135CrossRefGoogle Scholar
  76. Tian Z, Xiao W, Sun J, Windley B F, Glen R, Han C, Zhang Z, Zhang J, Wan B, Ao S, Song D (2015). Triassic deformation of Permian Early Triassic arc-related sediments in the Beishan (NW China): last pulse of the accretionary orogenesis in the southernmost Altaids. Tectonophysics, 662: 363–384CrossRefGoogle Scholar
  77. Tong Y, Hong D W, Wang T (2010a). Spatial and temporal distribution of granitoids in the middle segment of the Sino-Mongolian Border and its tectonic and metallogenic implications. Acta Geoscientica Sinica, 31(3): 395–412Google Scholar
  78. Tong Y, Wang T, Hong D W, Han B F, Zhang J J, Shi X J, Wang C (2010b). Spatial and temporal distribution of the Carboniferous- Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance. Acta Petrologica et Mineralogica, 29(6): 619–641Google Scholar
  79. Vladimirov A G, Kozlov M S, Shokalskii S P (2001). Major epochs of intrusive magmatism of Kuznetsk Alatau, Altai and Kalba (from UPb isotope dates). Geologiyai Geofizika, 42(8): 1157–1178 (Russian Geology and Geophysics)Google Scholar
  80. Vladimirov A G, Kruk N N, Polyanskii O P (2005). Correlation of Hercynian deformations, sedimentation and magmatism in the Altai collisional system as reflecting plate and plume tectonics. Problem of Tectonic of the Central Asia. Moscow: Geos. P., 1277–1308Google Scholar
  81. Wang B, Shu L S, Cluzel D, Faure M, Charvet J (2007a). Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): implication for the tectonic evolution of Western Tianshan. J Asian Earth Sci, 29(1): 148–159CrossRefGoogle Scholar
  82. Wang B, Shu L, Faure M, Jahn B, Cluzel D, Charvet J, Chung S, Meffre S (2011). Paleozoic tectonics of the southern Chinese Tianshan: insights from structural, chronological and geochemical studies of the Heiyingshan ophiolitic mélange (NW China). Tectonophysics, 497 (1): 85–104CrossRefGoogle Scholar
  83. Wang Q, Wyman D A, Zhao Z H, Xu J F, Bai Z H, Xiong X L, Dai T M, Li C F, Chu Z Y (2007b). Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan range (western China): implications for Phanerozoic crustal growth in the central Asia orogenic belt. Chem Geol, 236(1–2): 42–64CrossRefGoogle Scholar
  84. Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Ma J L (2006). Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization. J Petrol, 47(1): 119–144CrossRefGoogle Scholar
  85. Wang T Y, Gao J P, Wang J R (1998a). Magmatism of collisional and post-orogenic period in northern Alexa region in Inner Mongolia. Acta Geol Sin, (02): 126–137Google Scholar
  86. Wang T Y, Wang J R, Liu J K (1994). Igneous rock associations and geochemical characteristics of volcanic arc with continental crustal basement in Zongnaishan-Shalazhashan. Geochimica, 23(S1): 162–172Google Scholar
  87. Wang T Y, Zhang M J, Wang J R, Gao J P (1998b). The characteristics and tectonic implications of the thrust belt in Eugerwusu, China. Scientia Geologica Sinica, 33(04): 385–394Google Scholar
  88. Wang T, Jahn B M, Kovach V P (2008a). Mesozoic anorogenic granitic magmatism in the Altai Paleozoic accretionary orogen, NW China, and its implications for crustal architecture and growth. Abstract SE 53-A010, AOGS 5th Annual General Meeting, Busan, KoreaGoogle Scholar
  89. Wang T, Tong Y, Jahn B M (2007c). SHRIMP U-Pb Zircon geochronology of the Altai No.3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geol Rev, 32: 325–336CrossRefGoogle Scholar
  90. Wang T, Zheng Y D, Li T B, Gao Y (2004). Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. J Asian Earth Sci, 23 (5): 715–729CrossRefGoogle Scholar
  91. Wang Y J, Fan Z Y (1997). Discovery of Permian radiolarians in ophiolite belt on northern side of Xarmoron river, Nei Monggol and its geological significance. Acta Palaeontologica Sin, 36(1): 58–69Google Scholar
  92. Wang Y W, Wang J B, Wang L J, Long L L (2008b). Zircon U-Pb age, Sr-Nd isotope geochemistry and geological significances of the Weiya mafic-ultramafic complex, Xinjiang. Acta Petrologica Sinica, 24(4): 781–792Google Scholar
  93. Wang Y, Sun G H, Li J Y (2010). U-Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: a Triassic segment of the Altyn Tagh fault system. Geol Soc Am, 122(3–4): 487–505CrossRefGoogle Scholar
  94. Whalen J B, Jenner G A, Longstaffe F J, Robert F, Gariépv C (1996). Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite: petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. J Petrol, 37(6): 1463–1489CrossRefGoogle Scholar
  95. Wilson M (1989). Igneous Petrogenesis. London: Allen and Unwin, 120–158CrossRefGoogle Scholar
  96. Wu T R, He G Q (1993). Tectonic units and their fundamental characteristics on the northern margin of the Alxa block. Acta Geol Sin, 67(2): 97–108Google Scholar
  97. Xia L Q, Xu X Y, Xia Z C, Li X M, Ma Z P, Wang L S (2004). Petrogenesis of Carboniferous rift-related volcanic rocks in the Tianshan, northwestern China. Geol Soc Am Bull, 116(3): 419–433CrossRefGoogle Scholar
  98. Xiao W J, Han C, Yuan C, Sun M, Lin S, Chen H, Li Z, Li J, Sun S (2008). Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. J Asian Earth Sci, 32(2–4): 102–117CrossRefGoogle Scholar
  99. Xiao W J, Huang B C, Han C M, Sun S, Li J L (2010a). A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Res, 18(2–3): 253–273CrossRefGoogle Scholar
  100. Xiao W J, Mao Q G, Windley B F, Han C M, Qu J F, Zhang J E, Ao S J, Guo Q Q, Cleven N R, Lin S F, Shan Y H, Li J L (2010b). Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. Am J Sci, 310(10): 1553–1594CrossRefGoogle Scholar
  101. Xiao W J, Windley B F, Allen M B, Han C (2013). Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 23(4): 1316–1341CrossRefGoogle Scholar
  102. Xiao W J, Windley B F, Huang B C, Han C M, Yuan C, Chen H L, Sun M, Sun S, Li J L (2009). End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Int J Earth Sci, 98(6): 1189–1217CrossRefGoogle Scholar
  103. Xiao W J, Windley B F, Sun S, Li J, Huang B, Han C, Yuan C, Sun M, Chen H (2015). A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci, 43(1): 477–507CrossRefGoogle Scholar
  104. Xie F Q (2014). Study of granites rock mass of Zongnai, Shalaza and Bayinnuoergong. China University of Geosciences (Beijing)Google Scholar
  105. Xie L, Yin H Q, Zhou H R, Zhang W J (2014). Permian radiolarians from the Engeerwusu suture zone in Alashan area, Inner Mongolia and its geological significance. Geological Bulletin of China, 33: 691–697 (in Chinese)Google Scholar
  106. Xu B L, Yan G H, Lu F X, Zou T R, Tond Y, Cai J H, Liu C X, Zhang H F (2001). Petrology of rich-alkaline and alkaline intrusive complexes in Beishan-Alxa Region. Acta Petrologica et Mineralogica, 20(3): 263–272Google Scholar
  107. Xu H J, Ma C Q (2003). Constraints of experimental petrology on the origin of adakites, and petrogenesis of Mesozoic K-rich and high Sr/ Y ratio granitoids in eastern China. Earth Sci Front, 10: 417–427 (in Chinese)Google Scholar
  108. Yang S H, Zhou M F (2009). Geochemistry of the 430 Ma Jingbulake mafic-ultramafic intrusion in Western Xinjiang, NW China: implications for subduction related magmatism in the South Tianshan orogenic belt. Lithos, 113(1–2): 259–273CrossRefGoogle Scholar
  109. Yarmolyuk V V, Kovalenko V I, Sal’nikova E B (2002). Tectonomagmatic zoning, magma sources and geodynamics of the early Mesozoic Mongolia-Transbaikal province. Geotectonics, 36(4): 293–311Google Scholar
  110. Zhai M G, Bian A G (2000). At the end of the North China craton new super late Archean and Paleoproterozoic continent split a Mesoproterozoic cleavage. Sci China Ser D, 30(B12): 129–137Google Scholar
  111. Zhang J, Li J Y, Liu J F (2011). The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: new information from the Middle Ordovician detrital zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912–2934Google Scholar
  112. Zhang J, Wang T, Zhang L, Tong Y, Zhang Z, Shi X, Guo L, Huang H, Yang Q, Huang W, Zhao J, Ye K, Hou J (2015). Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, china: constraints on the southern boundary of the central Asian orogenic belt. J Asian Earth Sci, 108: 150–169CrossRefGoogle Scholar
  113. Zhang L F, Ai Y L, Li Q, Li X P, Song S G, Wei C J (2005). The formation and tectonic evolution of UHP metamorphic belt in southwestern Tianshan, Xinjiang. Acta Petrologica Sinica, 21(4): 1029–1038Google Scholar
  114. Zhang L F, Ai Y L, Li X P, Rubatto D, Song B, Williams S, Song S G, Ellis D, Liu J G (2007). Triassic collision of western Tianshan orogenic belt, China: evidence from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks. Lithos, 96(1–2): 266–280CrossRefGoogle Scholar
  115. Zhang Q, Jin W J, Li C D, Wang Y L (2010). Revisiting the new classification of granitic rocks based on whole-rock Sr and Yb contents: index. Acta Petrologica Sinica, 26(4): 985–1015Google Scholar
  116. Zhang Q, Qian Q, Wang E Q, Wang Y, Zhao T P, Hao J, Guo G J (2001a). An east China plateau in mid-late Yanshanian period: implication from adakites. Chinese Journal of Geology, 36(2): 248–255Google Scholar
  117. Zhang Q, Wang Y, Liu W, Wang Y L (2002a). Adakite: its characteristics and implications. Geological Bulletin of China, 21: 431–435 (in Chinese)Google Scholar
  118. Zhang Q, Wang Y, Qian Q, Yang J H, Wang Y L, Zhao T P, Guo G J (2001b). The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China. Acta Petrologica Sinica, 17(2): 236–244Google Scholar
  119. Zhang Q, Wang Y, Wang Y L (2001c). Preliminary study on the components of the lower crust in east China Plateau during Yanshanian Period: constraints on Sr and Nd isotopic compositions of adakite-like rocks. Acta Petrologica Sinica, 17(4): 505–513Google Scholar
  120. Zhang W Y, Nie F J, Liu Y, Jiang S H, Xu D Q, Guo L J (2008). 40Ar-39Ar Geochronology of the Aououte Cu-Zn Deposit in Inner-Mongolia and its Significance. Acta Geoscientica Sinica, 29(5): 592–598Google Scholar
  121. Zhang W, Wu T R, Feng J C (2013). Time constraints for the closing of the Paleo-Asian Ocean in the Northern Alxa Region: evidence from Wuliji granites. Science China. Earth Sci, 56: 153–164CrossRefGoogle Scholar
  122. Zhang Y Q (2009). Geochemical characteristics of Permian adakitic granodiorite in Bayinwula of Sonid Left Banner, Inner Mongolia. Acta Petrologica et Mineralogica, 28(4): 329–338Google Scholar
  123. Zhang Y Q, Han J G, Hu F X (2002b). Characteristics and tectonic significance of granites of Middle Triassic in Bayinnuorigong Area, Inner Mongolia. Inner Mongolia Geological, (4): 15–20Google Scholar
  124. Zhang Y Y, Dostal J, Zhao Z H, Liu C, Guo Z J (2011). Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China: implications for crust-mantle interaction. Gondwana Res, 20(4): 816–830CrossRefGoogle Scholar
  125. Zhang Z F, Li C Y, Niu Y Z (1997). Role, significance, characteristics and range of Alashan-Dunhuang land block. Inner Mongolia Geological, (2): 1–14Google Scholar
  126. Zhao Q Y, Liu Z H, Wu X W, Chen X F (2007). Characteristics and origin of Halaheshao pluton in Da Qingshan region, Inner-Mongolia. J Mineral Petrol, 27(1): 46–51Google Scholar
  127. Zheng R, Wu T, Zhang W, Xu C, Meng Q, Zhang Z (2014). Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites. Gondwana Res, 25(2): 842–858CrossRefGoogle Scholar
  128. Zhou T F, Yuan F, Zhang D Y, Fan Y, Liu S, Peng M X, Zhang J D (2010). Geochronology, tectonic setting and mineralization of granitoids in Jueluotage area, eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 26(2): 478–502Google Scholar
  129. Zonenshain L P, Kuzmin M I, Natapov L M, Page B M (1990). Geology of the USSR: A Plate-Tectonic Synthesis. American Geophysical Union, Geodynamics Series, 21: 1–242CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Xin Sha
    • 1
  • Jinrong Wang
    • 1
  • Wanfeng Chen
    • 1
  • Zheng Liu
    • 1
    • 2
  • Xinwei Zhai
    • 1
  • Jinlong Ma
    • 1
  • Shuhua Wang
    • 1
  1. 1.School of Earth SciencesGansu Key Laboratory of Mineral Resources in Western China Lanzhou UniversityLanzhouChina
  2. 2.State Key Laboratory for Mineral Deposits ResearchNanjing UniversityNanjingChina

Personalised recommendations