Frontiers of Earth Science

, Volume 10, Issue 4, pp 621–633 | Cite as

Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records

  • Xuhui Dong
  • Carl D. Sayer
  • Helen Bennion
  • Stephen C. Maberly
  • Handong Yang
  • Richard W. Battarbee
Research Article

Abstract

Palaeolimnological studies should ideally be based upon continuous, undisturbed sediment sequences with reliable chronologies. However for some lake cores, these conditions are not met and palaeolimnologists are often faced with dating puzzles caused by sediment disturbances in the past. This study chooses Esthwaite Water from England to illustrate how to identify sedimentation discontinuities in lake cores and how chronologies can be established for imperfect cores by correlation of key sediment signatures in parallel core records and with long-term monitoring data (1945–2003). Replicated short cores (ESTH1, ESTH7, and ESTH8) were collected and subjected to loss-on-ignition, radiometric dating (210Pb, 137Cs, and 14C), particle size, trace metal, and fossil diatom analysis. Both a slumping and a hiatus event were detected in ESTH7 based on comparisons made between the cores and the long-term diatom data. Ordination analysis suggested that the slumped material in ESTH7 originated from sediment deposited around 1805–1880 AD. Further, it was inferred that the hiatus resulted in a loss of sediment deposited from 1870 to 1970 AD. Given the existence of three superior 14C dates in ESTH7, ESTH1 and ESTH7 were temporally correlated by multiple palaeolimnological proxies for age-depth model development. High variability in sedimentation rates was evident, but good agreement across the various palaeolimnological proxies indicated coherence in sediment processes within the coring area. Differences in sedimentation rates most likely resulted from the natural morphology of the lake basin. Our study suggests that caution is required in selecting suitable coring sites for palaeolimnological studies of small, relatively deep lakes and that proximity to steep slopes should be avoided wherever possible. Nevertheless, in some cases, comparisons between a range of contemporary and palaeolimnological records can be employed to diagnose sediment disturbances and establish a chronology.

Key words

sediment disturbance lake sediment chronology slumping hiatus Esthwaite Water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson N J (1986). Diatom biostratigraphy and comparative core correlation within a small lake basin. Hydrobiologia, 143(1): 105–112CrossRefGoogle Scholar
  2. Anderson N J (2014). Landscape disturbance and lake response: temporal and spatial perspectives. Freshw Rev, 7(2): 77–120CrossRefGoogle Scholar
  3. Anderson N J, Korsman T, Renberg I (1994). Spatial heterogeneity of diatom stratigraphy in varved and non-varved sediments of a small, boreal-forest Lake. Aquat Sci, 56(1): 40–58CrossRefGoogle Scholar
  4. Appleby P, Oldfield F (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1): 1–8CrossRefGoogle Scholar
  5. Arnaud F, Lignier V, Revel M, Desmet M, Beck C, Pourchet M, Charlet F, Trentesaux A, Tribovillard N (2002). Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, NWAlps). Terra Nova, 14(4): 225–232CrossRefGoogle Scholar
  6. Bangs M, Battarbee R, Flower R, Jewson D, Lees J, Sturm M, Vologina E G, Mackay A W (2000). Climate change in Lake Baikal: diatom evidence in an area of continuous sedimentation. Int J Earth Sci, 89(2): 251–259CrossRefGoogle Scholar
  7. Barker P A, Pates JM, Payne R J, Healey RM (2005). Changing nutrient levels in Grasmere, English lake district, during recent centuries. Freshw Biol, 50(12): 1971–1981CrossRefGoogle Scholar
  8. Battarbee R, Jones V, Flower R, Cameron N, Bennion H, Carvalho L, Juggins S, Smol J P, Birks H J B, Last W M (2001) Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic PublishersGoogle Scholar
  9. Baxter M S, Farmer J G, McKinley I G, Swan D S, Jack W (1981). Evidence of the unsuitability of gravity coring for collecting sediment in pollution and sedimentation rate studies. Environ Sci Technol, 15(7): 843–846CrossRefGoogle Scholar
  10. Bennett K (1986). Coherent slumping of early postglacial lake sediments at Hall Lake, Ontario, Canada. Boreas, 15(3): 209–215CrossRefGoogle Scholar
  11. Bennett K, Fuller J (2002). Determining the age of the mid-Holocene Tsuga cana densis (hemlock) decline, eastern North America. Holocene, 12(4): 421–429CrossRefGoogle Scholar
  12. Bennion H, Monteith D, Appleby P (2000). Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub) fossil diatoms and aquatic macrophytes. Freshw Biol, 45(4): 394–412CrossRefGoogle Scholar
  13. Besonen M, Patridge W, Bradley R, Francus P, Stoner J, Abbott M B (2008). A record of climate over the last millennium based on varved lake sediments from the Canadian High Arctic. Holocene, 18(1): 169–180CrossRefGoogle Scholar
  14. Birks H H, Birks H J B (2006). Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot, 15(4): 235–251CrossRefGoogle Scholar
  15. Blockley S P E, Ramsey C B, Lane C S, Lotter A F (2008). Improved age modelling approaches as exemplified by the revised chronology for the Central European varved lake Soppensee. Quat Sci Rev, 27(1–2): 61–71CrossRefGoogle Scholar
  16. Chambers J, Cameron N (2001). A rod-less piston corer for lake sediments: an improved, rope-operated percussion corer. J Paleolimnol, 25(1): 117–122CrossRefGoogle Scholar
  17. Chu G, Liu J, Schettler G, Li J, Sun Q, Gu Z, Lu H, Liu Q, Liu T (2005). Sediment fluxes and varve formation in Sihailongwan, a maar lake from northeastern China. J Paleolimnol, 34(3): 311–324CrossRefGoogle Scholar
  18. Cohen A (2003) Paleolimnology: the History and Evolution of Lake Systems. New York: Oxford University PressGoogle Scholar
  19. Dong X H, Bennion H, Battarbee R W, Sayer C D (2012). A multiproxy palaeolimnological study of climate and nutrient impacts on Esthwaite Water, England over the past 1200 years. Holocene, 22(1): 107–118CrossRefGoogle Scholar
  20. Donovan J, Grimm E (2007). Episodic struvite deposits in a Northern Great Plains flyway lake: indicators of mid-Holocene drought? Holocene, 17(8): 1155–1169CrossRefGoogle Scholar
  21. Drzymulska D, Zieliński P (2014). Phases and interruptions in postglacial development of humic lake margin (Lake Suchar Wielki, NE Poland). Limnological Review, 14(1): 13–20CrossRefGoogle Scholar
  22. George D G (2012). The effect of nutrient enrichment and changes in the weather on the abundance of Daphnia in Esthwaite Water, Cumbria. Freshw Biol, 57(2): 360–372CrossRefGoogle Scholar
  23. Gilbert R, Lamoureux S (2004). Processes affecting deposition of sediment in a small, morphologically complex lake. J Paleolimnol, 31(1): 37–48CrossRefGoogle Scholar
  24. Glew J (1988). A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol, 1(3): 235–239CrossRefGoogle Scholar
  25. Håkanson L, Jansson M (1983) Principles of Lake Sedimentology. Berlin: SpringerCrossRefGoogle Scholar
  26. Haworth E (1980). Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn. Limnol Oceanogr, 25(6): 1093–1103CrossRefGoogle Scholar
  27. Heegaard E, Birks H J B, Telford R J (2005). Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene, 15(4): 612–618CrossRefGoogle Scholar
  28. Krammer K, Lange-Bertalot H (1986–1991). Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D, eds. Süsswasserflora von Mitteleuropa Stuttgart: Gustav Fischer VerlagGoogle Scholar
  29. Larsen C, MacDonald G (1993). Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quat Sci Rev, 12(9): 781–792CrossRefGoogle Scholar
  30. Lowe D (2008). Globalization of tephrochronology: new views from Australasia. Prog Phys Geogr, 32(3): 311–335CrossRefGoogle Scholar
  31. Ludlam S (1974). The role of turbidity currents in lake sedimentation. Limnol Oceanogr, 19(4): 656–664CrossRefGoogle Scholar
  32. Lund J W G, Kipling C, Le Cren E D (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11(2): 143–170CrossRefGoogle Scholar
  33. Maberly S C, Elliott J A (2012). Insights from long-term studies in the Windermere catchment: external stressors, internal interactions and the structure and function of lake ecosystems. Freshw Biol, 57(2): 233–243CrossRefGoogle Scholar
  34. Mackay E B, Jones I D, Folkard A M, Barker P (2012). Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshw Biol, 57(2): 290–304CrossRefGoogle Scholar
  35. Mackereth F (1969). A short core sampler for subaqueous deposits. Limnol Oceanogr, 14(1): 145–151CrossRefGoogle Scholar
  36. Martin P, Boes X, Goddeeris B, Fagel N (2005). A qualitative assessment of the influence of bioturbation in Lake Baikal sediments. Global Planet Change, 46(1–4): 87–99CrossRefGoogle Scholar
  37. Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero Ó, Engstrom D R, López-Vicente M, Navas A, Soto J (2011). Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol, 46(3): 423–452CrossRefGoogle Scholar
  38. Moreno A, Valero-Garcés B, González-Sampériz P, Rico M (2008). Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol, 40(3): 943–961CrossRefGoogle Scholar
  39. Rasmussen S O, Andersen K K, Svensson A M, Steffensen J P, Vinther BM, Clausen H B, Siggaard-Andersen ML, Johnsen S J, Larsen L B, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson M E, Ruth U (2006). A new Greenland ice core chronology for the last glacial termination. J Geophys Res, 111(D6): D06102CrossRefGoogle Scholar
  40. Renberg I (1981). Improved methods for sampling, photographing and varve-counting of varved lake-sediments. Boreas, 10(3): 255–258CrossRefGoogle Scholar
  41. Rose N L, Harlock S, Appleby P, Battarbee RW (1995). Dating of recent lake-sediments in the United-Kingdom and Ireland using spheroidal carbonaceous particle (Scp) concentration profiles. Holocene, 5(3): 328–335CrossRefGoogle Scholar
  42. Sadler P (2004). Quantitative biostratigraphy—Achieving finer resolution in global correlation. Annu Rev Earth Planet Sci, 32(1): 187–213CrossRefGoogle Scholar
  43. Sanchez-Cabeza J A, Ruiz-Fernández A C (2012). 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta, 82: 183–200CrossRefGoogle Scholar
  44. Sanders G, Jones K, Hamilton-Taylor J, Doerr H (1992). Historical inputs of polychlorinated biphenyls and other organochlorines to a dated lacustrine sediment core in rural England. Environ Sci Technol, 26(9): 1815–1821CrossRefGoogle Scholar
  45. Smol J (2009). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Wiley-BlackwellGoogle Scholar
  46. Telford R, Heegaard E, Birks H (2004). All age–depth models are wrong: but how badly? Quat Sci Rev, 23(1–2): 1–5CrossRefGoogle Scholar
  47. ter Braak C, Smilauer P (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Ithaca, N.Y.: Microcomputer PowerGoogle Scholar
  48. Tibby J (2001). Diatoms as indicators of sedimentary processes in Burrinjuck reservoir, New South Wales, Australia. Quat Int, 83–85: 245–256CrossRefGoogle Scholar
  49. Yeloff D, Mauquoy D (2006). The influence of vegetation composition on peat humification: implications for palaeoclimatic studies. Boreas, 35(4): 662–673CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Xuhui Dong
    • 1
    • 2
    • 3
  • Carl D. Sayer
    • 2
  • Helen Bennion
    • 2
  • Stephen C. Maberly
    • 4
  • Handong Yang
    • 2
  • Richard W. Battarbee
    • 2
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.Environmental Change Research Centre, Department of GeographyUniversity College LondonLondonUK
  3. 3.Aarhus Institute of Advanced StudiesAarhus UniversityAarhus CDenmark
  4. 4.Lake Ecosystems GroupCentre for Ecology & HydrologyLancasterUK

Personalised recommendations