Frontiers of Earth Science

, Volume 10, Issue 4, pp 784–793 | Cite as

Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations

  • Zhengjia Liu
  • Mei HuangEmail author
Research Article


Clarifying the spatial and temporal variations in precipitation-use efficiency (PUE) is helpful for advancing our knowledge of carbon and water cycles in Tibetan grassland ecosystems. Here we use an integrated remote sensing normalized difference vegetation index (NDVI) and in-situ above-ground net primary production (ANPP) measurements to establish an empirical exponential model to estimate spatial ANPP across the entire Tibetan Plateau. The spatial and temporal variations in PUE (the ratio of ANPP to mean annual precipitation (MAP)), as well as the relationships between PUE and other controls, were then investigated during the 2001–2012 study period. At a regional scale, PUE increased from west to east. PUE anomalies increased significantly (>0.1 g·m–2·mm–1/10 yr) in the southern areas of the Tibetan Plateau yet decreased (>0.02 g·m–2·mm–1/10 yr) in the northeastern areas. For alpine meadow, we obtained an obvious breaking point in trend of PUE against elevation gradients at 3600 m above the sea level, which showed a contrasting relationship. At the inter-annual scale, PUE anomalies were smaller in alpine steppe than in alpine meadow. The results show that PUE of Tibetan grasslands is generally high in dry years and low in wet years.


normalized difference vegetation index (NDVI) Tibetan Plateau inter-annual variations alpine grasslands exponential model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11707_2016_566_MOESM1_ESM.pdf (1.3 mb)
Supplementary material, approximately 1.32 MB.


  1. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89(8): 2140–2153CrossRefGoogle Scholar
  2. Baumann F, He J, Schmidt K, Kuhn P, Scholten T (2009). Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau. Glob Change Biol 15(12): 3001–3017CrossRefGoogle Scholar
  3. Beniston M, Diaz H, Bradley R (1997). Climatic change at high elevation sites: an overview. Clim Change, 36(3–4): 233–251CrossRefGoogle Scholar
  4. Bonan G B (1997). Effects of land use on the climate of the United States. Clim Change 37(3): 449–486CrossRefGoogle Scholar
  5. Bunn A G, Goetz S J (2006). Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density. Earth Interact, 10 (12): 1–19CrossRefGoogle Scholar
  6. Fan J, Shao Q, Liu J, Wang J, Harris W, Chen Z, Zhong H, Xu X, Liu R (2010). Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai–Tibet Plateau, China. Environ Monit Assess, 170(1–4): 571–584CrossRefGoogle Scholar
  7. Fay P A, Kaufman D M, Nippert J B, Carlisle J D, Harper C W (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob Change Biol 14(7): 1600–1608CrossRefGoogle Scholar
  8. Fensholt R, Rasmussen K (2011). Analysis of trends in the Sahelian ‘rain-use efficiency’ using GIMMS NDVI, RFE and GPCP rainfall data. Remote Sens Environ 115(2): 438–451CrossRefGoogle Scholar
  9. Fensholt R, Rasmussen K, Kaspersen P, Huber S, Horion S, Swinnen E (2013). Assessing land degradation/recovery in the African Sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens 5(2): 664–686CrossRefGoogle Scholar
  10. Findell K L, Pitman A J, England M H, Pegion P J (2009). Regional and global impacts of land cover change and sea surface temperature anomalies. J Clim 22(12): 3248–3269CrossRefGoogle Scholar
  11. Guo Q, Hu Z, Li S, Li X, Sun X, Yu G (2012). Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob Change Biol 18(12): 3624–3631CrossRefGoogle Scholar
  12. He J, Fang J, Wang Z, Guo D, Flynn D F, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia 149(1): 115–122CrossRefGoogle Scholar
  13. Holben B N (1986). Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7(11): 1417–1434CrossRefGoogle Scholar
  14. Hu Z, Yu G, Fan J, Zhong H, Wang S, Li S (2010). Precipitation-use efficiency along a 4500-km grassland transect. Glob Ecol Biogeogr 19(6): 842–851CrossRefGoogle Scholar
  15. Huang L, Shao Q, Liu J (2012). Forest restoration to achieve both ecological and economic progress, Poyang Lake basin, China. Ecol Eng 44(3): 53–60CrossRefGoogle Scholar
  16. Hutchinson M F, McKenney D W, Lawrence K, Pedlar J H, Hopkinson R F, Milewska E, Papadopol P (2009). Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J Appl Meteorol Climatol 48(4): 725–741CrossRefGoogle Scholar
  17. Huxman T E, Smith M D, Fay P A, Knapp A K, Shaw M R, Loik M E, Smith S D, Tissue D T, Zak J C, Weltzin J F (2004). Convergence across biomes to a common rain-use efficiency. Nature 429(6992): 651–654CrossRefGoogle Scholar
  18. Knapp A K, Fay P A, Blair J M, Collins S L, Smith M D, Carlisle J D, Harper C W, Danner B T, Lett M S, McCarron J K (2002). Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298(5601): 2202–2205CrossRefGoogle Scholar
  19. Lauenroth W K, Burke I C, Paruelo J M (2000). Patterns of production and precipitation-use efficiency of winter wheat and native grasslands in the central Great Plains of the United States. Ecosystems (N Y), 3 (4): 344–351CrossRefGoogle Scholar
  20. LeHouerou H N (1984). Rain use efficiency: a unifying concept in aridland ecology. J Arid Environ 7(3): 213–247Google Scholar
  21. Liu Z, Shao Q, Wang S (2015). Variation of alpine grasslands and its response to climate warming in the Tibetan Plateau since the 21st Century. Arid Land Geography 38(2): 275–282 (in Chinese)Google Scholar
  22. Liu Z, Wang L, Wang S (2014). Comparison of different GPP Models in China using MODIS image and China FLUX Data. Remote Sens, 6 (10): 10215–10231CrossRefGoogle Scholar
  23. Liu Z, Yu X, Wang S, Shang G (2012). Comparative analysis of three covariates methods in thin-plate smoothing splines for interpolating precipiation. Progress in Geography 31(1): 56–62 (in Chinese)Google Scholar
  24. Lotsch A, Friedl M A, Anderson B T, Tucker C J (2005). Response of terrestrial ecosystems to recent Northern Hemispheric drought. Geophys Res Lett, 32(6): L06705CrossRefGoogle Scholar
  25. Ma W H, Fang J Y, Yang Y H, Mohammat A (2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci China Life Sci 53(7): 841–850CrossRefGoogle Scholar
  26. O’Connor T, Haines L, Snyman H (2001). Influence of precipitation and species composition on phytomass of a semi-arid African grassland. J Ecol 89(5): 850–860CrossRefGoogle Scholar
  27. Peng S, Chen A, Xu L, Cao C, Fang J, Myneni R B, Pinzon J E, Tucker C J, Piao S (2011). Recent change of vegetation growth trend in China. Environ Res Lett, 6(4): 044027CrossRefGoogle Scholar
  28. Piao S, Cui M, Chen A, Wang X, Ciais P, Liu J, Tang Y (2011). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric For Meteorol 151(12): 1599–1608CrossRefGoogle Scholar
  29. Piao S, Fang J, He J (2006). Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Clim Change, 74(1–3): 253–267CrossRefGoogle Scholar
  30. Tao J, Zhang Y, Zhu J, Jiang Y, Zhang X, Zhang T, Xi Y (2014). Elevation-dependent temperature change in the Qinghai–Xizang Plateau grassland during the past decade. Theor Appl Climatol, 117 (1–2): 61–71CrossRefGoogle Scholar
  31. Valladares F, Pearcy R (2002). Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year. Plant Cell Environ, 25 (6): 749–759CrossRefGoogle Scholar
  32. Wang K, Wang P, Li Z, Cribb M, Sparrow M (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res, 112 (D15): D15107CrossRefGoogle Scholar
  33. Wang S, Yu X, Liu Z (2014). Spatiotemporal patterns of NDVI and its responses to temperature and precipitation over Yimeng Mountainous Area. Remote Sensing Technology and Application 29(1): 61–68 (in Chinese)Google Scholar
  34. Wu C, Chen J M, Pumpanen J, Cescatti A, Marcolla B, Blanken P D, Ardö J, Tang Y, Magliulo V, Georgiadis T, Soegaard H, Cook D R, Harding R J (2012). An underestimated role of precipitation frequency in regulating summer soil moisture. Environ Res Lett, 7 (2): 024011CrossRefGoogle Scholar
  35. Yang Y, Fang J, Fay P A, Bell J E, Ji C (2010). Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophys Res Lett, 37: L15702Google Scholar
  36. Yang Y, Fang J, Ji C, Han W (2009a). Above- and below ground biomass allocation in Tibetan grasslands. J Veg Sci 20(1): 177–184CrossRefGoogle Scholar
  37. Yang Y, Fang J, Ma W, Wang W (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett, 35(23): L23710CrossRefGoogle Scholar
  38. Yang Y, Fang J, Pan Y, Ji C (2009b). Aboveground biomass in Tibetan grasslands. J Arid Environ 73(1): 91–95CrossRefGoogle Scholar
  39. Yuan W, Xu B, Chen Z, Xia J, Xu W, Chen Y, Wu X, Fu Y (2014). Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theor Appl Climatol, 119(3–4): 689–700Google Scholar
  40. Zhang G, Zhang Y, Dong J, Xiao X (2013). Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci USA 110(11): 4309–4314CrossRefGoogle Scholar
  41. Zhao M, Pitman A, Chase T (2001). The impact of land cover change on the atmospheric circulation. Clim Dyn, 17(5–6): 467–477CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijingChina

Personalised recommendations