Frontiers of Earth Science

, Volume 10, Issue 4, pp 707–716 | Cite as

Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China

  • Yuanjie Zhu
  • Xinwei LuEmail author
  • Linna Yang
  • Lijun Wang
Research Article


The accumulation and source of heavy metals As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the surface sediment of a reservoir near an industrial park of northwest China were determined by enrichment factor and multi-variate statistical analysis. Multivariate statistical analyses, i.e., factor analysis, cluster analysis, and correlation coefficient analysis, were used to identify the possible sources of the heavy metals. The results show that the mean concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the reservoir sediment are higher than their corresponding concentrations in the control sample, indicating all analyzed heavy metals accumulated in the surface sediments. The values of the mean concentrations of heavy metals in the surface sediment divided by their corresponding concentrations in the control sample increase in the order of Ba = Cr<Co = Pb<V<Ni<Cu = Zn<As<Mn. The enrichment factor values of Ba and Cr in the surface sediment samples are<2, revealing minimal enrichment, while the enrichment factor values of As, Co, Cu, Mn, Ni, Pb, V, and Zn are in the range of 2‒5, displaying moderate enrichment. Combining the results of correlation coefficient analysis, factor analysis, and cluster analysis, three main sources of these heavy metals were identified. As, Co, Cu, Mn, Ni, and V have mixed sources of natural and industrial sources and local consumption residues; Pb and Zn mainly originate from industrial activities, while Ba and Cr primarily originate from natural sources.


sediment heavy metal multivariate statistical analysis source reservoir 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaser P, Zimmermann S, Luster J, Shotyk W (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ, 249(1–3): 257–280CrossRefGoogle Scholar
  2. Boruvka L, Vacek O, Jehlicka J (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3–4): 289–300CrossRefGoogle Scholar
  3. Chen H, Lu X W, Li L Y, Gao T N, Chang Y Y (2014). Metal contamination in campus dust of Xi’an, China: a study based on multivariate statistics and spatial distribution. Sci Total Environ, 484: 27–35CrossRefGoogle Scholar
  4. Chen T, Liu X M, Zhu M Z, Zhao K L, Wu J J, Xu J M, Huang P M (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environ Pollut, 151(1): 67–78CrossRefGoogle Scholar
  5. Chen X D, Lu X W, Yang G (2012). Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. Catena, 98: 73–78CrossRefGoogle Scholar
  6. Cicek A, Koparal A S (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57(8): 1031–1036CrossRefGoogle Scholar
  7. Covelli S, Fontolan G (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30(1–2): 34–45CrossRefGoogle Scholar
  8. Daskalakis K D, O’Connor T P (1995). Distribution of chemical concentrations in US coastal and estuarine sediment. Mar Environ Res, 40(4): 381–398CrossRefGoogle Scholar
  9. Duzgoren-Aydin N S (2007). Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ, 385(1–3): 182–195CrossRefGoogle Scholar
  10. Facchinelli A, Sacchi E, Mallen L (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut, 114(3): 313–324CrossRefGoogle Scholar
  11. Fang W X, Huang Z Y, Wu P W (2003). Contamination of the environmental ecosystems by trace elements from mining activities of Badao bone coal mine in China. Environmental Geology, 44(4): 373–378CrossRefGoogle Scholar
  12. Farkas A, Erratico C, Viganò L (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68(4): 761–768CrossRefGoogle Scholar
  13. Feng H, Han X F, Zhang W G, Yu L Z (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull, 49(11–12): 910–915CrossRefGoogle Scholar
  14. Filgueiras A V, Lavilla I, Bendicho C (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci Total Environ, 330(1–3): 115–129CrossRefGoogle Scholar
  15. Glasby G P, Szefer P, Geldon J, Warzocha J (2004). Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci Total Environ, 330(1–3): 249–269CrossRefGoogle Scholar
  16. González-Macías C, Schifter I, Lluch-Cota D B, Méndez-Rodríguez L, Hernández-Vázquez S (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, México. Environ Monit Assess, 118(1–3): 211–230CrossRefGoogle Scholar
  17. Han Y M, Du P X, Cao J J, Posmentier E S (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ, 355(1–3): 176–186Google Scholar
  18. Hsu MJ, Selvaraj K, Agoramoorthy G (2006). Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ Pollut, 143(2): 327–334CrossRefGoogle Scholar
  19. Li F, Huang J H, Zeng G M, Yuan X Z, Li X D, Liang J, Wang X Y, Tang X J, Bai B (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor, 132: 75–83CrossRefGoogle Scholar
  20. Liu W X, Li X D, Shen Z G, Wang D C, Wai O W H, Li Y S (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut, 121(3): 377–388CrossRefGoogle Scholar
  21. Lu X W, Li L Y, Wang L J, Lei K, Huang J, Zhai Y X (2009). Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ, 43(15): 2489–2496CrossRefGoogle Scholar
  22. Lu X W, Li X X, Yun P J, Luo D C, Wang L J, Ren C H, Chen C C (2012). Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China. Radiat Prot Dosimetry, 148(2): 219–226CrossRefGoogle Scholar
  23. Lu X W, Wang L J, Li L Y, Lei K, Huang L, Kang D (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater, 173(1–3): 744–749CrossRefGoogle Scholar
  24. Lu Y, Gong Z T, Zhang G L, BurghardtWG (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma, 115(1–2): 101–111CrossRefGoogle Scholar
  25. Mandal A, Sengupta D (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3): 409–420CrossRefGoogle Scholar
  26. Manta D S, Angelone M, Bellanca A, Neri R, Sprovieri M(2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ, 300(1–3): 229–243CrossRefGoogle Scholar
  27. Mao L J, Mo D W, Yang J H, Jia Y F, Guo Y Y (2013). Concentration and pollution assessment of hazardous metal elements in sediments of the Xiangjiang River, China. J Radioanal Nucl Chem, 295(1): 513–521CrossRefGoogle Scholar
  28. Meza-Figueroa D, De la O-Villanueva M, De la Parra M L (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ, 41(2): 276–288CrossRefGoogle Scholar
  29. Mil-Homens M, Stevens R L, Abrantes F, Cato I (2006). Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res, 26(10): 1184–1205CrossRefGoogle Scholar
  30. Pen-Mouratov S, Shukurov N, Steinberger Y (2008). Influence of industrial heavy metal pollution on soil free-living nematode population. Environ Pollut, 152(1): 172–183CrossRefGoogle Scholar
  31. Rehman W, Zeb A, Noor N, Nawaz M (2008). Heavy metal pollution assessment in various industries of Pakistan. Environmental Geology, 55(2): 353–358CrossRefGoogle Scholar
  32. Reimann C, de Caritat P (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol, 34(24): 5084–5091CrossRefGoogle Scholar
  33. Reimann C, de Caritat P (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ, 337(1–3): 91–107CrossRefGoogle Scholar
  34. Saeedi M, Li L Y, Salmanzadeh M (2012). Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater, 227–228: 9–17CrossRefGoogle Scholar
  35. Santos Bermejo J C, Beltrán R, Gómez Ariza J L (2003). Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain). Environ Int, 29(1): 69–77CrossRefGoogle Scholar
  36. Sharma A P, Tripathi B D (2008). Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environ Monit Assess, 138(1–3): 31–39CrossRefGoogle Scholar
  37. Sin S N, Chua H, Lo W, Ng L M (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int, 26(5–6): 297–301CrossRefGoogle Scholar
  38. Tariq S R, Shah M H, Shaheen N, Khalique A, Manzoor S, Jaffar M (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: a case study from Peshawar, Pakistan. J Environ Manage, 79(1): 20–29CrossRefGoogle Scholar
  39. Tokalioglu S, Kartal S (2006). Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmos Environ, 40(16): 2797–2805CrossRefGoogle Scholar
  40. Tume P, Bech J, Reverter F, Bech J, Longan L, Tume L, Sepúlveda B (2011). Concentration and distribution of twelve metals in Central Catalonia surface soils. J Geochem Explor, 109(1–3): 92–103CrossRefGoogle Scholar
  41. Turner A, Simmonds L (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Sci Total Environ, 371(1–3): 74–81CrossRefGoogle Scholar
  42. Upadhyay A K, Gupta K K, Sircar J K, Deb M K, Mundhara G L (2006). Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environmental Geology, 50(3): 397–403CrossRefGoogle Scholar
  43. Varol M (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater, 195: 355–364CrossRefGoogle Scholar
  44. Vega F A, Covelo E F, Andrade M L (2008). Impact of industrial and urban waste on the heavy metal content of salt marsh soils in the southwest of the province of Pontevedra (Galicia, Spain). J Geochem Explor, 96(2–3): 148–160CrossRefGoogle Scholar
  45. Wang L J, Lu X W, Li L Y, Ren C H, Luo D C, Chen J H (2015). Content, speciation and pollution assessment of Cu, Pb and Zn in soil around the lead-zinc smelting plant of Baoji, NW China. Environmental Earth Sciences, 73(9): 5281–5288CrossRefGoogle Scholar
  46. Wang L J, Lu X W, Ren C H, Li X X, Chen C C (2014b). Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environmental Earth Sciences, 71(5): 2095–2104CrossRefGoogle Scholar
  47. Wang L, Wang Y P, Zhang W Z, Xu C X, An Z Y (2014a). Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Sciences, 71(3): 1183–1193CrossRefGoogle Scholar
  48. Yang Z P, Lu W X, Long Y Q, Bao X H, Yang Q C (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor, 108(1): 27–38CrossRefGoogle Scholar
  49. Ye C, Li S Y, Zhang Y L, Zhang Q F (2011). Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Hazard Mater, 191(1–3): 366–372CrossRefGoogle Scholar
  50. Zhang M M, Lu X W, Chen H, Gao P P, Fu Y (2015). Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China. J Radioanal Nucl Chem, 303(1): 637–646CrossRefGoogle Scholar
  51. Zhao Y F, Shi X Z, Huang B, Yu D S, Wang H J, Sun W X, Öboern I, Blombäck K (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17(1): 44–51CrossRefGoogle Scholar
  52. Zoller W H, Gladney E S, Duce R A (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121). 198–200CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yuanjie Zhu
    • 1
  • Xinwei Lu
    • 1
    Email author
  • Linna Yang
    • 1
  • Lijun Wang
    • 1
  1. 1.School of Tourism and EnvironmentShaanxi Normal UniversityXi’anChina

Personalised recommendations