Advertisement

Frontiers of Earth Science

, Volume 10, Issue 4, pp 772–783 | Cite as

Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

  • Danan Dong
  • Wen ChenEmail author
  • Miaomiao Cai
  • Feng Zhou
  • Minghua Wang
  • Chao Yu
  • Zhengqi Zheng
  • Yuanfei Wang
Research Article

Abstract

The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

Keywords

multi-antenna synchronized global navigation satellite system receiver high-precision positioning attitude determination multipath effect mitigation phase center variation correction ground-based carrier phase wind-up calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber C, Ware R, Rocken C, Braun J (2000). Obtaining single path phase delays from GPS double differences. Geophys Res Lett, 27(17): 2661–2664CrossRefGoogle Scholar
  2. Ashtech Inc. (1991). 3DF 24-Channel GPS measurement system. Houston: Ashtech Inc.Google Scholar
  3. Banville S, Tang H (2010). Antenna rotation and its effects on kinematic Precise point positioning. In: Proceedings of ION GNSS-2010. Portland, OR, 2545–2552Google Scholar
  4. Bilich A (2006). Improving the Precision and Accuracy of Geodetic GPS: Applications to Multipath and Seismology. Dissertation for Ph. D degree. Boulder: University of ColoradoGoogle Scholar
  5. Bilich A, Mader G L (2010). GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings of ION GNSS-2010. Portland, OR, 1369–1377Google Scholar
  6. Bock Y, Nikolaidis R, de Jonge P J, Bevis M (2000). Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res, 105(B12): 28223–28254CrossRefGoogle Scholar
  7. Cannon M E, Berry E, King M (1993). Testing a lightweight GPS/GIS terminal for sub-meter DGPS positioning. In: Proceedings of ION GPS-93. Salt Lake City, UT, 1011–1020Google Scholar
  8. Cannon M E, Lachapelle G (1992). Analysis of a high-performance C/A code GPS receiver in kinematic mode. Navigation, 39(3): 285–300CrossRefGoogle Scholar
  9. Choi K, Bilich A, Larson K M, Axelrad P (2004). Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett, 31(22): L22608CrossRefGoogle Scholar
  10. Cohen C E (1992). Attitude Determination Using GPS. Dissertation for Ph.D drgree. Stanford: Stanford UniversityGoogle Scholar
  11. Cohen C E, Parkinson B W (1991). Mitigating Multipath in GPS-Based Attitude Determination. In: 14th AAS Guidance and Control Conference. Keystone, Colo, 53–68Google Scholar
  12. Dong D N, Chen W, Cai MM, Zhou F, Xia J C, ChengMF, Yu C, Qiu S (2015a). Attitude determination solution for multi-antenna synchronized GNSS receiver. 201510015460.6.Google Scholar
  13. Dong D N, Chen W, Yu C, Cai M M, Zhou F, Cheng Y N, Cheng M F, Lv J Y, Qiu S (2015b). Azimuth angle determination method from estimated ground-based carrier phase wind-up with multi-antenna synchronized GNSS receiver. 201510096274.X.Google Scholar
  14. Dong D N, Zheng Z Q, Kuang L, Chen W, Wang Y F, Zeng Z, Song L, Zhou F, Cai M M, Zhang Q Q, Xia J C (2014). Multipath hemispherical model (MHM) for multipath mitigation. 201410310467.6.Google Scholar
  15. Fenton P C, Falkenberg B, Ford T, Ng K, Van Dierendonck A J (1991). NoVatel’s GPS receiver-the high performance OEM sensor of the future. In: Proceedings of ION GPS-91. Albuquerque, NM, 49–58Google Scholar
  16. Fuhrmann T, Luo X G, KnöpflerA, Mayer M (2015). Generating statistically robust multipath stacking maps using congruent cells. GPS Solut, 19(1): 83–92CrossRefGoogle Scholar
  17. Ge L L, Han S W, Rizos C (2000). Multipath mitigation of continuous GPS measurements using an adaptive filter. GPS Solut, 4(2): 19–30CrossRefGoogle Scholar
  18. Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J Geod, 82(7): 389–399CrossRefGoogle Scholar
  19. Genrich J, Bock Y (1992). Rapid resolution of crustal motion at short ranges with the Global Positioning System. J Geophys Res, 97(B3): 3261–3269CrossRefGoogle Scholar
  20. Hermann B R (1985). A Simulation of the navigation and orientation potential of the Ti-Agr. Mar Geod, 9(2): 133–143CrossRefGoogle Scholar
  21. Keong J, Lachapelle G (2000). Heading and pitch determination using GPS/GLONASS. GPS Solut, 3(3): 26–36CrossRefGoogle Scholar
  22. Kouba J, Héroux P (2001). Precise point positioning using IGS orbit and clock products. GPS Solut, 5(2): 12–28CrossRefGoogle Scholar
  23. Kruczynski L R, Li P C, Evans A G, Hermann B R (1989). Using GPS to determine vehicle attitude: USS Yorktown test results. In: Proceedings of ION GPS-89. Colorado Springs, 163–171Google Scholar
  24. Larson K M, Bilich A, Axelrad P (2007). Improving the precision of high-rate GPS. J Geophys Res, 112(B5): B05422CrossRefGoogle Scholar
  25. Li Y, Zhang K, Roberts C, Murata M (2004). On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements. GPS Solut, 8(2): 93–102CrossRefGoogle Scholar
  26. Lu G, Lachapelle G, CannonME, Vogel B (1994). Performance analysis of a shipborne gyrocompass with a multi-antenna GPS system. In: Proceedings of IEEE PLANSc94. Las Vegas, 337–343Google Scholar
  27. Mader G (1999). GPS antenna calibration at the national geodetic survey. GPS Solut, 3(1): 50–58CrossRefGoogle Scholar
  28. Nee R D J V (1992). The multipath estimating delay lock loop. In: Proceedings of IEEE 2nd Symposium on Spread Spectrum Techniques and Applications. Yokohama, 39–42Google Scholar
  29. Ragheb A E, Clarke P J, Edwards S J (2007). GPS sidereal filtering: coordinate and carrier-phase-level strategies. J Geod, 81(5): 325–335CrossRefGoogle Scholar
  30. Rothacher M, Schaer S, Mervart L, Beutler G (1995). Determination of antenna phase center variations using GPS data. In: Proceedings of the IGS Workshop. Potsdam, GermanyGoogle Scholar
  31. Schupler B R, Clark T A, Allshouse R L (1995). Characterizations of GPS user antennas: reanalysis and new results. In: Beutler G et al., eds. GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications. IAG Symposia, Vol.115. Boulder, CO, USA: Springer VerlagGoogle Scholar
  32. Souza E M, Monico J F G (2004). Wavelet shrinkage: high frequency multipath reduction from GPS relative positioning. GPS Solut, 8(3): 152–159CrossRefGoogle Scholar
  33. Tetewsky A K, Mullen F E (1997). Carrier phase wrap-up induced by rotating GPS antennas. GPS World, 8(2): 51–57Google Scholar
  34. Teunissen P J G (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod, 70(1-2): 65–82CrossRefGoogle Scholar
  35. Teunissen P J G, de Jonge P J, Tiberius C C J M (1997). The leastsquares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod, 71(10): 589–602CrossRefGoogle Scholar
  36. Townsend B, Fenton P (1994). A practical approach to the reduction of pseudorange multipath errors in A L1 GPS receiver. In: Proceedings of ION GPS-94, Salt Lake City, 143–148Google Scholar
  37. UNAVCO (1995). Receiver and Antenna Test Report. University Navstar Consortium (UNAVCO) Academic Research Infrastructure (ARI), Boulder, ColoradoGoogle Scholar
  38. Van Dierendonck A J, Fenton P, Ford T (1992). Theory and performance of narrow correlator spacing in a GPS receiver. Navigation, 39(3): 265–283CrossRefGoogle Scholar
  39. Wilson G J, Tonnemacher J D (1992). A GPS attitude determination system. J Navig, 45(2): 192–204CrossRefGoogle Scholar
  40. Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993). Effects of antenna orientation on GPS carrier phase. Manuscr Geod, 18(2): 91–98Google Scholar
  41. Wübbena G, Menge F, Schmitz M, Seeber G, Völksen C (1996). A new approach for field calibration of absolute antenna phase center variations. In: Proceedings of ION GPS-96. Kansas City, MO, 1205–1214Google Scholar
  42. Ye S R, Chen D Z, Liu Y Y, Jiang P, TangW M, Xia P F (2014). Carrier phase multipath mitigation for BeiDou navigation satellite system. GPS Solut, doi: 10.1007/s10291-014-0409-1Google Scholar
  43. Young L, Meehan T (1988). GPS Multipath effect on code-using receiver. In: American Geophysical Union Meeting. Baltimore, MD, USA: 335–343Google Scholar
  44. Zheng D W, Zhong P, Ding X L, Chen W (2005). Filtering GPS time series using a Vondrak filter and cross-validation. J Geod, 79(6–7): 363–369CrossRefGoogle Scholar
  45. Zhong P, Ding X L, Yuan L G, Xu Y L, Kwok K, Chen Y Q (2010). Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. J Geod, 84(2): 145–158CrossRefGoogle Scholar
  46. Zhou F, Dong D N, Chen W, Cai M M (2015). Isolating fractional phase delays in single differences with common receiver clock. (Submitted to GPS solutions)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danan Dong
    • 1
    • 2
    • 3
  • Wen Chen
    • 1
    • 2
    Email author
  • Miaomiao Cai
    • 1
  • Feng Zhou
    • 1
  • Minghua Wang
    • 4
  • Chao Yu
    • 1
    • 2
  • Zhengqi Zheng
    • 1
  • Yuanfei Wang
    • 1
    • 3
  1. 1.Engineering Center of SHMEC for Space Information and GNSSEast China Normal UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina
  3. 3.Key Laboratory of Geographic Information Science, Ministry of EducationEast China Normal UniversityShanghaiChina
  4. 4.College of Surveying and Geo-informaticsTongji UniversityShanghaiChina

Personalised recommendations