Skip to main content

Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

Abstract

Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

This is a preview of subscription content, access via your institution.

References

  • Alves R J E, Wanek W, Zappe A, Richter A, SvenningMM, Schleper C, Urich T (2013). Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea. ISME J, 7(8): 1620–1631

    Article  Google Scholar 

  • Baron J S (1992). Biogeochemistry of a Subalpine Ecosystem: Loch Vale Watershed. New York: Springer-Verlag

    Book  Google Scholar 

  • Baron J S, Driscoll C T, Stoddard J L, Richer E E (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61 (8): 602–613

    Article  Google Scholar 

  • Baron J S, Rueth H M, Wolfe A M, Nydick K R, Allstott E J, Minear J T, Moraska B (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3(4): 352–368

    Article  Google Scholar 

  • Baron J S, Schmidt T M, Hartman MD (2009). Climate-induced changes in high elevation stream nitrate dynamics. Glob Change Biol, 15(7): 1777–1789

    Article  Google Scholar 

  • Bieber A J, Williams M W, Johnsson M J, Davinroy T C (1998). Nitrogen transformations in alpine talus fields, Green Lakes Valley, Front Range, Colorado, USA. Arctic and alpine research, 30(3): 266–271

    Article  Google Scholar 

  • Boyd E S, Lange R K, Mitchell A C, Havig J R, Hamilton T L, Lafrenière M J, Shock E L, Peters J W, Skidmore M (2011). Diversity, abundance, and potential activity of nitrifying and nitratereducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol, 77(14): 4778–4787

    Article  Google Scholar 

  • Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2011). Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J, 5 (6): 1025–1037

    Article  Google Scholar 

  • Campbell D H, Kendall C, Chang C C Y, Silva S R, Tonnessen K A (2002). Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res, 38(5): 10-1–10-9

    Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008). Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl, 18(3): 637–648

    Article  Google Scholar 

  • Chu H, Grogan P (2010). Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape. Plant and Soil, 329(1–2): 411–420

    Article  Google Scholar 

  • Clow DW (2010). Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J Clim, 23(9): 2293–2306

    Article  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Wallenstein M D, Maestre F T (2013). Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol, 85(2): 273–282

    Article  Google Scholar 

  • Di H J, Cameron K C, Shen J P, Winefield C S, O’Callaghan M, Bowatte S, He J Z (2010). Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol Ecol, 72 (3): 386–394

    Article  Google Scholar 

  • Elser J J, Andersen T, Baron J S, Bergström A K, Jansson M, Kyle M, Nydick K R, Steger L, Hessen D O (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954): 835–837

    Article  Google Scholar 

  • Erguder T H, Boon N, Wittebolle L, Marzorati M, Verstraete W (2009). Environmental factors shaping the ecological niches of ammoniaoxidizing archaea. FEMS Microbiol Rev, 33(5): 855–869

    Article  Google Scholar 

  • Fierer N, Schimel J P, Holden P A (2003). Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem, 35(1): 167–176

    Article  Google Scholar 

  • Firestone M K, Davidson E A (1989). Microbiological basis of NO and N2O production and consumption in soil. In: Andreae M O, Schimel D S, eds. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. New York: John Wiley and Sons Ltd, 7–21

    Google Scholar 

  • Fisk M C, Schmidt S K (1996). Microbial responses to nitrogen additions in alpine tundra soil. Soil Biol Biochem, 28(6): 751–755

    Article  Google Scholar 

  • Fountain A G, Campbell J L, Schuur E A G, Stammerjohn S E, Williams M W, Ducklow H W (2012). The disappearing cryosphere: impacts and ecosystem responses to rapid cryosphere loss. BioScience, 62(4): 405–415

    Article  Google Scholar 

  • Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA, 102 (41): 14683–14688

    Article  Google Scholar 

  • Gee G W, Bauder J W (1986). Particle-size analysis. In: Klute A, ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Madison: ASA and SSSA Publ, 383–411

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson B C, James P, Schloter M, Griffiths R I, Prosser J I, Nicol G W (2011). Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci USA, 108(52): 21206–21211

    Article  Google Scholar 

  • Hannah D M, Brown L E, Milner A M, Gurnell A M, Mc Gregor G R, Petts G E, Smith B P G, Snook D L (2007). Integrating climatehydrology-ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems, 17(6): 636–656

    Article  Google Scholar 

  • Hatzenpichler R (2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol, 78(21): 7501–7510

    Article  Google Scholar 

  • Huber E, Bell T L, Simpson R R, Adams M A (2011). Relationships among micoclimate, edaphic conditions, vegetarian distribution and soil nitrogen dynamics on the Bogong High Plains, Australia. Austral Ecology, 36(2): 142–152

    Article  Google Scholar 

  • IPCC (2014). Climate Change, Adaptation, and Vulnerability

    Google Scholar 

  • Kattelmann R, Elder K (1991). Hydrologic characteristics and water balance of an alpine basin in the Sierra Nevada.Water Resour Res, 27 (7): 1553–1562

    Google Scholar 

  • Kirkham D, Bartholomew W V (1954). Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J, 18(1): 33–34

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G W, Prosser J I, Schuster S C, Schleper C (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 442(7104): 806–809

    Article  Google Scholar 

  • Linn D M, Doran JW(1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J, 48(6): 1267–1272

    Article  Google Scholar 

  • Lipson D A, Monson R K, Schmidt S K, Weintraub M N (2009). The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry, 95(1): 23–25

    Article  Google Scholar 

  • Makarov M I, Glaser B, Zech W, Malysheva T I, Bulatnikova I V, Volkov A V (2003). Nitrogen dynamics in alpine ecosystems of the northern Caucasus. Plant and Soil, 256(2): 389–402

    Article  Google Scholar 

  • Martens-Habbena W, Berube P M, Urakawa H, de la Torre J R, Stahl D A (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266): 976–979

    Article  Google Scholar 

  • Miller A E, Schimel J P, Sickman J O, Meixner T, Doyle A P, Melack J M (2007). Mineralization responses at near-zero temperatures in three alpine soils. Biogeochemistry, 84(3): 233–245

    Article  Google Scholar 

  • Morris K H, Mast M A, Clow D W, Wetherbee G A, Baron J S, Taipale C, Gay D, Richer E (2012). 2010 monitoring and tracking wet nitrogen deposition in Rocky Mountain National Park. National Park Service Natural Resource Report, 34

    Google Scholar 

  • Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999). Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia, 119(2): 239–246

    Article  Google Scholar 

  • Parton WJ, Mosier A R, Ojima D S, Valentine D W, Schimel D S, Weier K, Kulmala A E (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochem Cycles, 10(3): 401–412

    Article  Google Scholar 

  • Prosser J I, Nicol G W (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol, 10(11): 2931–2941

    Article  Google Scholar 

  • Rango A, van Katwijk V F (1990). Climate change effects on the snowmelt hydrology of western North American mountain basins. Geoscience and Remote Sensing. IEEE Transactions, 28(5): 970–974

    Google Scholar 

  • Rotthauwe J H, Witzel K P, Liesack W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 63(12): 4704–4712

    Google Scholar 

  • Seastedt T R, Bowman W D, Caine T N, McKnight D, Townsend A, Williams M W (2004). The landscape continuum: a model for highelevation ecosystems. BioScience, 54(2): 111–121

    Article  Google Scholar 

  • Sickman J O, Leydecker A L, Chang C C Y, Kendall C, Melack J M, Lucero D M, Schimel J (2003). Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry, 64(1): 1–24

    Article  Google Scholar 

  • Stark J M, Hart S C (1996). Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J, 60(6): 1846–1855

    Article  Google Scholar 

  • Sun G, Luo P, Wu N, Qiu P F, Gao Y H, Chen H, Shi F S (2009). Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1): 86–91

    Article  Google Scholar 

  • Tai X S, Mao W L, Liu G X, Chen T, Zhang W, Wu X K, Long H Z, Zhang B G, Gao T P (2014). Distribution of ammonia oxidizers in relation to vegetation characteristics in the Qilian Mountains, northwestern China. Biogeosciences Discuss, 11(4): 5123–5146

    Article  Google Scholar 

  • Valentine D L (2007). Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol, 5(4): 316–323

    Article  Google Scholar 

  • Waldrop M P, Firestone M K (2006). Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol, 52(3): 470–479

    Article  Google Scholar 

  • Wallenstein M D, Hall E K (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109(1–3): 35–47

    Article  Google Scholar 

  • Yao H, Gao Y, Nicol G W, Campbell C D, Prosser J I, Zhang L, Han W, Singh B K (2011). Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol, 77(13): 4618–4625

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke B. Osborne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osborne, B.B., Baron, J.S. & Wallenstein, M.D. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats. Front. Earth Sci. 10, 1–12 (2016). https://doi.org/10.1007/s11707-015-0556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-015-0556-x

Keywords

  • ammonia-oxidizing archaea (AOA)
  • ammonia- oxidizing bacteria (AOB)
  • global change
  • Loch Vale watershed
  • nitrification
  • thermal adaptation