Frontiers of Earth Science

, Volume 10, Issue 4, pp 634–643 | Cite as

Black carbon record of the wildfire history of western Sichuan Province in China over the last 12.8 ka

  • Weiwei Sun
  • Enlou ZhangEmail author
  • Ji Shen
  • Rong Chen
  • Enfeng Liu
Research Article


Wildfire is recognized as a critical Earth system process which affects the global carbon cycle, atmospheric chemistry, and ecosystem dynamics. Estimating the potential impact of future climate change on the incidence of fire requires an understanding of the long-term interactions of fire, climate, vegetation, and human activity. Accordingly, we analyzed the black carbon content and the pollen stratigraphy of sediments spanning the past 12.8 ka from Lake Muge Co, an alpine lake in western Sichuan Province, in order to determine the main factors influencing regional fire regimes. The results demonstrate that wildfires occurred frequently and intensively during the late deglaciation and the early Holocene when the regional vegetation was dominated by deciduous forests. Wildfire occurrence decreased significantly during the Holocene climatic optimum between 9.2 and 5.6 cal ka BP. Overall, the wildfire history of western Sichuan Province is similar to that of the Chinese Loess Plateau and of East Asia as a whole, suggesting that regional-scale fires depended mainly on changes in the intensity of the Asian summer monsoon. In addition, the fire regime of western Sichuan Province may have been influenced by the establishment of human settlement and agriculture in western Sichuan Province and the southeastern Tibetan Plateau after about 5.5 cal ka BP, and by an intensification of cereal cultivation coupled with population expansion in southwestern China during the last two millennia.


black carbon wildfire summer monsoon human activity Holocene Lake Muge Co 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldenderfer M S (2007). Modeling the Neolithic on the Tibetan Plateau. In: Madsen D B, Chen F, Gao X, eds. Developments in Quaternary Sciences. Amsterdam: Elsevier, 151–165Google Scholar
  2. Berna F, Goldberg P, Horwitz L K, Brink J, Holt S, Bamford M, Chazan M (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci USA, 109(20): E1215–E1220CrossRefGoogle Scholar
  3. Bird B W, Polisar P J, Lei Y, Thompson L G, Yao T, Finney B P, Bain D J, Pompeani D P, Steinman B A (2014). A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth Planet Sci Lett, 399: 92–102CrossRefGoogle Scholar
  4. Bird M I, Gröcke D R (1997). Determination of the abundance and carbon isotope composition of elemental carbon in sediments. Geochim Cosmochim Acta, 61(16): 3413–3423CrossRefGoogle Scholar
  5. Bowman D M J S, Balch J, Artaxo P, Bond W J, Cochrane M A, D’Antonio C M, DeFries R, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Mack M, Moritz M A, Pyne S, Roos C I, Scott A C, Sodhi N S, Swetnam T W (2011). The human dimension of fire regimes on Earth. J Biogeogr, 38(12): 2223–2236CrossRefGoogle Scholar
  6. Bowman D M J S, Balch J K, Artaxo P, Bond W J, Carlson J M, Cochrane M A, D’Antonio C M, DeFries R S, Doyle J C, Harrison S P, Johnston F H, Keeley J E, Krawchuk M A, Kull C A, Marston J B, Moritz M A, Prentice I C, Roos C I, Scott A C, Swetnam T W, van derWerf G R, Pyne S J (2009). Fire in the earth system. Science, 324(5926): 481–484CrossRefGoogle Scholar
  7. Chen F, Chen X, Chen J, Zhou A, Wu D, Tang L, Zhang X, Huang X, Yu J (2014a). Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quaternary Sci, 29(7): 661–674CrossRefGoogle Scholar
  8. Chen F, Niu S, Tong X, Zhao J, Sun Y, He T (2014b). The impact of precipitation regimes on forest fires in Yunnan Province, Southwest China. Scientific World Journal, doi: 10.1155/2014/326782 Google Scholar
  9. Chen J, Li C, He G (2007). A diagnostic analysis of the impact of complex terrain in the eastern Tibetan Plateau, China, on a severe storm. Arct Antarct Alp Res, 39(4): 699–707CrossRefGoogle Scholar
  10. Conedera M, Tinner W, Neff C, Meurer M, Dickens A F, Krebs P (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev, 28(5-6): 555–576CrossRefGoogle Scholar
  11. d’Alpoim Guedes J (2011). Millets, rice, social complexity, and the spread of agriculture to the Chengdu Plain and Southwest China. Rice (N Y), 4(3-4): 104–113Google Scholar
  12. d’Alpoim Guedes J (2013). Adaptation and Invention during the Spread of Agriculture to Southwest China. Dissertation for PhD degree. Harvard University, Cambridge, MassachusettsGoogle Scholar
  13. d’Alpoim Guedes J, Jiang M, He K, Wu X, Jiang Z (2013). Site of Baodun yields earliest evidence for the spread of rice and foxtail millet agriculture to south-west China. Antiquity, 87(337): 758–771CrossRefGoogle Scholar
  14. Dearing J A, Jones R T, Shen J, Yang X, Boyle J F, Foster G C, Crook D S, Elvin M J D (2008). Using multiple archives to understand past and present climate–human–environment interactions: the lake Erhai catchment, Yunnan Province, China. J Paleolimnol, 40(1): 3–31CrossRefGoogle Scholar
  15. Dykoski C A, Edwards R L, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1-2): 71–86CrossRefGoogle Scholar
  16. Elvin M, Crook D, Ji S, Jones R, Dearing J (2002). The impact of clearance and irrigation on the environment in the Lake Erhai catchment from the ninth to the nineteenth century. East Asian Studies, 23: 1–60Google Scholar
  17. Fægri K, Kaland P E, Krzywinski K (1989). Textbook of Pollen Analysis, 4th ed. Chichester: John Wiley& SonsGoogle Scholar
  18. Flannigan M, Stocks B, Turetsky M, Wotton M (2009). Impacts of climate change on fire activity and fire management in the circumboreal forest. Glob Change Biol, 15(3): 549–560CrossRefGoogle Scholar
  19. Fuller D Q, Qin L (2009). Water management and labour in the origins and dispersal of Asian rice. World Archaeol, 41(1): 88–111CrossRefGoogle Scholar
  20. Henck A, Taylor J, Lu H, Li Y, Yang Q, Grub B, Breslow S J, Robbins A, Elliott A, Hinckley T, Combs J, Urgenson L, Widder S, Hu X, Ma Z, Yuan Y, Jian D, Liao X, Tang Y (2010). Anthropogenic hillslope terraces and swidden agriculture in Jiuzhaigou National Park, northern Sichuan, China. Quat Res, 73(2): 201–207CrossRefGoogle Scholar
  21. Herzschuh U, Kürschner H, Mischke S (2006). Temperature variability and vertical vegetation belt shifts during the last ~50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China). Quat Res, 66(1): 133–146CrossRefGoogle Scholar
  22. Higuera P E, Brubaker L B, Anderson P M, Hu F S, Brown T A (2009). Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska. Ecol Monogr, 79(2): 201–219CrossRefGoogle Scholar
  23. Hong Y T, Hong B, Lin Q H, Zhu Y X, Shibata Y, Hirota M, Uchida M, Leng X T, Jiang H B, Xu H, Wang H, Yi L (2003). Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Sci Lett, 211(3-4): 371–380CrossRefGoogle Scholar
  24. Hou J, D’Andrea W J, Liu Z (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79CrossRefGoogle Scholar
  25. Jarvis D I (1993). Pollen evidence of changing Holocene monsoon climate in Sichuan Province, China. Quat Res, 39(3): 325–337CrossRefGoogle Scholar
  26. Keeley J E, Pausas J G, Rundel P W, Bond W J, Bradstock R A (2011). Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci, 16(8): 406–411CrossRefGoogle Scholar
  27. Klein Goldewijk K, Beusen A, van Drecht G, de Vos M (2011). The HYDE 3.1 spatially explicit database of human-induced global landuse change over the past 12,000 years. Glob Ecol Biogeogr, 20(1): 73–86CrossRefGoogle Scholar
  28. Lafon C W, Quiring S M (2012). Relationships of fire and precipitation regimes in temperate forests of the eastern United States. Earth Interact, 16(11): 1–15CrossRefGoogle Scholar
  29. Li D, Niu S, Long X, Xu G, Wang S, Chen F (2013). Relationship of forest fires and meteorological factors in Sichuan province. Journal of Northwest A&F University (Nat. Sci. Ed), 41(6): 67–74 (in Chinese)Google Scholar
  30. Li J, Wang G, Liu X, Han J, Liu M, Liu X (2009). Variations in carbon isotope ratios of C3 plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga. Science China. Earth Sci, 52(11): 1714–1723Google Scholar
  31. Lim B, Cachier H (1996). Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays. Chem Geol, 131(1–4): 143–154CrossRefGoogle Scholar
  32. Marlon J, Bartlein P J, Whitlock C (2006). Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene, 16(8): 1059–1071CrossRefGoogle Scholar
  33. Marlon J R, Bartlein P J, Carcaillet C, Gavin D G, Harrison S P, Higuera P E, Joos F, Power M J, Prentice I C (2008). Climate and human influences on global biomass burning over the past two millennia. Nat Geosci, 1(10): 697–702CrossRefGoogle Scholar
  34. Marlon J R, Bartlein P J, Daniau A L, Harrison S P, Maezumi S Y, Power M J, Tinner W, Vanniére B (2013). Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat Sci Rev, 65: 5–25CrossRefGoogle Scholar
  35. Mooney S D, Harrison S P, Bartlein P J, Daniau A L, Stevenson J, Brownlie K C, Buckman S, Cupper M, Luly J, Black M, Colhoun E, D’Costa D, Dodson J, Haberle S, Hope G S, Kershaw P, Kenyon C, McKenzie M, Williams N (2011). Late Quaternary fire regimes of Australasia. Quat Sci Rev, 30(1–2): 28–46CrossRefGoogle Scholar
  36. Power M J, Marlon J, Ortiz N, Bartlein P J, Harrison S P, Mayle F E, Ballouche A, Bradshaw R H W, Carcaillet C, Cordova C, Mooney S, Moreno P I, Prentice I C, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali A A, Anderson R S, Beer R, Behling H, Briles C, Brown K J, Brunelle A, Bush M, Camill P, Chu G Q, Clark J, Colombaroli D, Connor S, Daniau A L, Daniels M, Dodson J, Doughty E, Edwards M E, Finsinger W, Foster D, Frechette J, Gaillard M J, Gavin D G, Gobet E, Haberle S, Hallett D J, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong Z C, Larsen C, Long C J, Lynch J, Lynch E A, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson D M, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard P J H, Rowe C, Sanchez Goñi M F, Shuman B N, Takahara H, Toney J, Turney C, Urrego-Sanchez D H, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang J H (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dyn, 30(7–8): 887–907CrossRefGoogle Scholar
  37. Reimer P J, Bard E, Bayliss A, Beck J W, Blackwell P G, Ramsey C B, Buck C E, Cheng H, Edwards R L, Friedrich M (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4): 1869–1887CrossRefGoogle Scholar
  38. Schmidt M W I, Noack A G (2000). Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem Cycles, 14(3): 777–793CrossRefGoogle Scholar
  39. Schütt B, Berking J, Frechen M, Frenzel P, Schwalb A, Wrozyna C (2010). Late Quaternary transition from lacustrine to a fluviolacustrine environment in the north-western Nam Co, Tibetan Plateau, China. Quat Int, 218(1–2): 104–117CrossRefGoogle Scholar
  40. Shen J, Jones R T, Yang X, Dearing J A, Wang S (2006). The Holocene vegetation history of Lake Erhai, Yunnan province southwestern China: the role of climate and human forcings. Holocene, 16(2): 265–276CrossRefGoogle Scholar
  41. Shen J, Liu X, Wang S, Ryo M (2005). Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int, 136(1): 131–140CrossRefGoogle Scholar
  42. Tan Z, Han Y, Cao J, Huang C C, An Z (2015). Holocene wildfire history and human activity from high-resolution charcoal and elemental black carbon records in the Guanzhong Basin of the Loess Plateau, China. Quat Sci Rev, 109: 76–87CrossRefGoogle Scholar
  43. Tan Z, Huang C C, Pang J, Zhou Q (2011). Holocene wildfires related to climate and land-use change over theWeihe River Basin, China. Quat Int, 234(1–2): 167–173CrossRefGoogle Scholar
  44. Tan Z, Huang C C, Pang J, Zhou Y (2013). Wildfire history and climatic change in the semi-arid loess tableland in the middle reaches of the Yellow River of China during the Holocene: evidence from charcoal records. Holocene, 23(10): 1466–1476CrossRefGoogle Scholar
  45. Thevenon F, Williamson D, Bard E, Anselmetti F S, Beaufort L, Cachier H (2010). Combining charcoal and elemental black carbon analysis in sedimentary archives: implications for past fire regimes, the pyrogenic carbon cycle, and the human–climate interactions. Global Planet Change, 72(4): 381–389CrossRefGoogle Scholar
  46. Wang B, Clemens S C, Liu P (2003). Contrasting the Indian and East Asian monsoons: implications on geologic timescales. Mar Geol, 201 (1–3): 5–21CrossRefGoogle Scholar
  47. Wang X, Ding Z, Peng P (2012). Changes in fire regimes on the Chinese Loess Plateau since the last glacial maximum and implications for linkages to paleoclimate and past human activity. Palaeogeogr Palaeoclimatol Palaeoecol, 315–316: 61–74CrossRefGoogle Scholar
  48. Wang X, Peng P A, Ding Z L (2005). Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires. Palaeogeogr Palaeoclimatol Palaeoecol, 223(1–2): 9–19CrossRefGoogle Scholar
  49. Wang X, Xiao J, Cui L, Ding Z (2013). Holocene changes in fire frequency in the Daihai Lake region (north-central China): indications and implications for an important role of human activity. Quat Sci Rev, 59: 18–29CrossRefGoogle Scholar
  50. Whitlock C, Higuera P E, McWethy D B, Briles C E (2010). Paleoecological perspectives on fire ecology: revisiting the fireregime concept. Open Ecology Journal, 3(2): 6–23CrossRefGoogle Scholar
  51. Wu D, Zhou A, Liu J, Chen X, Wei H, Sun H, Yu J, Bloemendal J, Chen F (2014). Changing intensity of human activity over the last 2,000 years recorded by the magnetic characteristics of sediments from Xingyun Lake, Yunnan, China. J Paleolimnol, 53(1): 1–14Google Scholar
  52. Wu Y, Andreas L, Bernd W, Li S, Wang S (2007). Holocene climate change in the Central Tibetan Plateau inferred by lacustrine sediment geochemical records. Science China. Earth Sci, 50(10): 1548–1555Google Scholar
  53. Yang Y, Shen C, Yi W, Sun Y, Liu D (2001). The elemental carbon record in Weinan loess section since the last 21 ka. Chin Sci Bull, 46 (18): 1541–1543Google Scholar
  54. Zhou B, Shen C, Sun W, Zheng H, Yang Y, Sun Y, An Z (2007). Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol, 252(3–4): 617–625CrossRefGoogle Scholar
  55. Zhu L, Zhen X, Wang J, Lü H, Xie M, Kitagawa H, Possnert G (2009). A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J Paleolimnol, 42(3): 343–358CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Weiwei Sun
    • 1
    • 2
  • Enlou Zhang
    • 1
    Email author
  • Ji Shen
    • 1
  • Rong Chen
    • 1
  • Enfeng Liu
    • 1
  1. 1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and LimnologyChinese Academy of SciencesNanjingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations