Skip to main content
Log in

Network analysis of eight industrial symbiosis systems

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Industrial symbiosis is the quintessential characteristic of an eco-industrial park. To divide parks into different types, previous studies mostly focused on qualitative judgments, and failed to use metrics to conduct quantitative research on the internal structural or functional characteristics of a park. To analyze a park’s structural attributes, a range of metrics from network analysis have been applied, but few researchers have compared two or more symbioses using multiple metrics. In this study, we used two metrics (density and network degree centralization) to compare the degrees of completeness and dependence of eight diverse but representative industrial symbiosis networks. Through the combination of the two metrics, we divided the networks into three types: weak completeness, and two forms of strong completeness, namely “anchor tenant” mutualism and “equality-oriented” mutualism. The results showed that the networks with a weak degree of completeness were sparse and had few connections among nodes; for “anchor tenant” mutualism, the degree of completeness was relatively high, but the affiliated members were too dependent on core members; and the members in “equality-oriented” mutualism had equal roles, with diverse and flexible symbiotic paths. These results revealed some of the systems’ internal structure and how different structures influenced the exchanges of materials, energy, and knowledge among members of a system, thereby providing insights into threats that may destabilize the network. Based on this analysis, we provide examples of the advantages and effectiveness of recent improvement projects in a typical Chinese eco-industrial park (Shandong Lubei).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton W S (2008). Understanding the organization of industrial ecosystems: a social network approach. J Ind Ecol, 12(1): 34–51

    Article  Google Scholar 

  • Ashton W S (2009). The structure, function, and evolution of a regional industrial ecosystem. J Ind Ecol, 13(2): 228–246

    Article  Google Scholar 

  • Ashton W S, Bain A C (2012). Assessing the “short mental distance in eco-industrial networks”. J Ind Ecol, 16(1): 70–82

    Article  Google Scholar 

  • Borgatti S P (2005). Centrality and network flow. Soc Networks, 27(1): 55–71

    Article  Google Scholar 

  • Chen D J (2003). Analysis, integration and complexity study of industrial ecosystems. Dissertation for PhD Degree. Beijing: Tsinghua University (in Chinese)

    Google Scholar 

  • Chertow M R (2000). Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ, 25(1): 313–337

    Article  Google Scholar 

  • Chertow M R (2007). “Uncovering” industrial symbiosis. J Ind Ecol, 11 (1): 11–30

    Article  Google Scholar 

  • Chertow M R, Lombardi D R (2005). Quantifying economic and environmental benefits of co-located firms. Environ Sci Technol, 39 (17): 6535–6541

    Article  Google Scholar 

  • Côté R P, Cohen-Rosenthal E (1998). Designing eco-industrial parks: a synthesis of some experiences. J Clean Prod, 6(3–4): 181–188

    Article  Google Scholar 

  • Dai T J (2010). Two quantitative indices for the planning and evaluation of eco-industrial parks. Resour Conserv Recycling, 54(7): 442–448

    Article  Google Scholar 

  • Doménech T, Davies M (2009). The social aspects of industrial symbiosis: the application of social network analysis to industrial symbiosis networks. Prog Ind Ecol Internat J, 6(1): 68–99

    Article  Google Scholar 

  • Doménech T, Davies M (2011). Structure and morphology of industrial symbiosis networks: the case of Kalundborg. Procedia Soc Behav Sci, 10: 79–89

    Article  Google Scholar 

  • Dunne J A, Williams R J, Martinez N D (2002). Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA, 99(20): 12917–12922

    Article  Google Scholar 

  • Ehrenfeld J, Chertow M (2002). Industrial symbiosis: the legacy of Kalundborg. In: Ayres R, Ayres L, eds. Handbook of Industrial Ecology. Cheltenham: Edward Elgar Publishing Ltd, 334–350

    Google Scholar 

  • Ehrenfeld J, Gertler N (1997). Industrial ecology in practice: the evolution of interdependence at Kalundborg. J Ind Ecol, 1(1): 67–79

    Article  Google Scholar 

  • Engberg H (1992). Industrial Symbiosis in Denmark. New York: Leonard N. Stern School of Business

    Google Scholar 

  • Fang Y P, Côté R P, Qin R (2007). Industrial sustainability in China: practice and prospects for eco-industrial development. J Environ Manage, 83(3): 315–328

    Article  Google Scholar 

  • Fath B D, Patten B C (1999). Review of the foundations of network environ analysis. Ecosystems (N Y), 2(2): 167–179

    Google Scholar 

  • Feng J T (2003). Development and practice of eco-industrial linkages in Lubei Group. China Population Resource and Environment, 1: 110–112 (in Chinese)

    Google Scholar 

  • Fichtner W, Tietze-Stöckinger I, Rentz O (2004). On industrial symbiosis networks and their classification. Prog Ind Ecol Internat J, 1(1/2/3): 130–142

    Article  Google Scholar 

  • Gertler N, Ehrenfeld J R (1996). A down-to-earth approach to clean production. Technol Rev, 99(2): 48–54

    Google Scholar 

  • Graedel T, Allenby B R (1995). Industrial Ecology. New Jersey: Prentice-Hall

    Google Scholar 

  • Granovetter M S (1973). The strength of weak ties. Am J Sociol, 78(6): 1360–1380

    Article  Google Scholar 

  • Hardy C, Graedel T E (2002). Industrial ecosystems as food webs. J Ind Ecol, 6(1): 29–38

    Article  Google Scholar 

  • Harper E, Graedel T (2004). Industrial ecology: a teenager’s progress. Technol Soc, 26(2–3): 433–445

    Article  Google Scholar 

  • Heeres R R, Vermeulen W J V, de Walle F B D (2004). Eco-industrial park initiatives in the USA and the Netherlands: first lessons. J Clean Prod, 12(8–10): 985–995

    Article  Google Scholar 

  • Jacobsen N B (2006). Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects. J Ind Ecol, 10(1/2): 239–255

    Google Scholar 

  • Kitakyushu Eco-Town Plan by the City of Kitakyushu (2012). http://www.hkip.org.hk/plcc/download/Japan.pdf

  • Kitakyushu Eco-Town Project (2005). http://pub.iges.or.jp/contents/APEIS/RISPO/inventory/db/pdf/0147.pdf

  • Lambert A J D, Boons F A (2002). Eco-industrial parks: stimulating sustainable development in mixed industrial parks. Technovation, 22 (8): 471–484

    Article  Google Scholar 

  • Lowe E A (1997). Creating by-product resource exchanges: strategies for eco-industrial parks. J Clean Prod, 5(1–2): 57–65

    Article  Google Scholar 

  • Lowe E A (2001). Eco-Industrial Park Handbook for Asian Developing Countries. http://teclim.ufba.br/jsf/producaol/indigo%20ecopk%2001_18.PDF

    Google Scholar 

  • Martin S A, Weitz A, Cushman R, Sharma A, Lindrooth R C, Moran S R (1996). Eco-Industrial Parks: A Case Study and Analysis of Economic, Environmental, Technical, and Regulatory Issues. Research Triangle Park, NC: Research Triangle Institute. Project Number 6050 FR

    Google Scholar 

  • Mihelcic J R, Zimmerman J B (2010). Environmental Engineering: Fundamentals, Sustainability, Design. New York: JohnWiley & Sons

    Google Scholar 

  • Mirata M, Emtairah T (2005). Industrial symbiosis networks and the contribution to environmental innovation: the case of the Landskrona industrial symbiosis programme. J Clean Prod, 13(10–11): 993–1002

    Article  Google Scholar 

  • Muto Y (2004). Sustainable Management Activities in Kitakyushu Eco-Town. Office for International Environmental Cooperation, Environmental Bureau, City of Kitakyushu http://www.env.go.jp/earth/coop/neac/neac13/session3/295-303.pdf

    Google Scholar 

  • Paine R T (1969). A note on trophic complexity and community stability. Am Nat, 103(929): 91–93

    Article  Google Scholar 

  • Potts Carr A J (1998). Choctaw eco-industrial park: an ecological approach to industrial land-use planning and design. Landsc Urban Plan, 42(2–4): 239–257

    Article  Google Scholar 

  • Schwarz E J, Steininger K W (1997). Implementing nature’s lesson: the industrial recycling network enhancing regional development. J Clean Prod, 5(1–2): 47–56

    Article  Google Scholar 

  • Scott J (2000). Social Network Analysis: A Handbook. London: Sage Publications

    Google Scholar 

  • Scott J, Tallia A, Crosson J C, Urzano A J, Stroebel C, DiCicco-Bloom B, O’Malley D, Shaw E, Crabtree B (2005). Social network analysis as an analytic tool for interaction patterns in primary care practices. Ann Fam Med, 3(5): 443–448

    Article  Google Scholar 

  • Shi H, Chertow M, Song Y Y (2010). Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. J Clean Prod, 18(3): 191–199

    Article  Google Scholar 

  • TEDA Trade Promotion Centre (2012). http://www.tradeteda.org/en/.

  • van Beers D, Bossilkov A, Corder G, van Berkel R (2007). Industrial symbiosis in the Australian minerals industries: the cases of Kwinana and Gladstone. J Ind Ecol, 11(1): 55–72

    Article  Google Scholar 

  • van Berkel R V, Fujita T, Hashimoto S, Fujii M (2009). Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environ Sci Technol, 43(5): 1271–1281

    Article  Google Scholar 

  • Wells P E, Darby L (2006). Rewriting the ecological metaphor, Part 2: the example of diversity. Prog Ind Ecol Internat J, 3(1/2): 129–147

    Article  Google Scholar 

  • Wright R A, Côté R P, Duffy J, Brazner J (2009). Diversity and connectance in an industrial context: the case of Burnside Industrial Park. J Ind Ecol, 13(4): 551–564

    Article  Google Scholar 

  • Wu Y P, Duan N, Qiao Q, Liu J Y (2004). Study on industrial symbiosis chain and net structure of the all new type ecosystem industrial parks. China Population. Resources and Environment, 14: 125–130 (in Chinese)

    Google Scholar 

  • Yang L, Hu S Y, Liang R Z, Chen D J, Fang X, Li Y R, Shen J Z, Feng J T, Kong L Q (2004). The Lubei eco-industrial model of China. Chinese Journal of Process Engineering, 4: 467–474 (in Chinese)

    Google Scholar 

  • Zhang Y, Yang Z F, Fath B D, Li S S (2010). Ecological network analysis of an urban energy metabolic system: model development, and a case study of four Chinese cities. Ecol Modell, 221(16): 1865–1879

    Article  Google Scholar 

  • Zhang Y, Zheng HM, Chen B, Yang N J (2013). Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. Front Earth Sci, 7(2): 169–181

    Article  Google Scholar 

  • Zhong G, Cao J, Cao L J, Wang S P (2010). Quantitative analysis of industrial symbiot Chinese Society for Environmental Sciences, ed. Proceedings 2010 China Environmental Science Society Annual Meeting, 5–7 May, Shanghai. Beijing: China Environmental Science Press, 1192–1200 (in Chinese)

    Google Scholar 

  • Zhu Q E, Lowe E A, Wei Y, Barnes D (2007). Industrial symbiosis in China: a case study of the Guitang Group. J Ind Ecol, 11(1): 31–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zheng, H., Shi, H. et al. Network analysis of eight industrial symbiosis systems. Front. Earth Sci. 10, 352–365 (2016). https://doi.org/10.1007/s11707-015-0520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-015-0520-9

Keywords

Navigation