Frontiers of Earth Science

, Volume 9, Issue 4, pp 605–636 | Cite as

Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

  • Edward D. ZaronEmail author
  • Patrick J. Fitzpatrick
  • Scott L. Cross
  • John M. Harding
  • Frank L. Bub
  • Jerry D. Wiggert
  • Dong S. Ko
  • Yee Lau
  • Katharine Woodard
  • Christopher N. K. Mooers
Research Article


In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.


Gulf of Mexico Deepwater Horizon ocean forecasting skill assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnone R A, Casey B, Ko D S, Flynn P, Carrolo L, Landner S (2007). Forecasting coastal optical properties using ocean color and coastal circulation models. Proceedings of SPIE-The International Society for Optical Engineering, 6680Google Scholar
  2. Arnone R A, Casey B, Ladner S, Ko D S, Gould R W (2010). Forecasting the coastal optical properties using satellite ocean color. In Barale V, Gower J F, Alberotanza L, eds. Oceanography from Space, 335–348CrossRefGoogle Scholar
  3. Badejo O, Nwilo P (2011). Oil spill model for oil pollution control. In Proceedings, International Federation of Surveyors Working Week 2011 and 6th National Congress of the Ordre National des Ingenieurs Geometres Topographes, 29. Avalable at Google Scholar
  4. Barron C N, Birol Kara A, Rhodes R C, Rowley C, Smedstad L F (2007). Validation test report of the 1/8° Global Navy Coastal Ocean Model nowcast/forecast system. Tech. Rep. NRL/MR/7320-07-9019, Naval Research Laboratory, Stennis Space Center, MS, 144Google Scholar
  5. Breaker L C, Gemmill W H, Crosby D S (1994). The application of a technique for vector correlation to problems in meteorology and oceanography. J Appl Meteorol, 33(11): 1354–1365CrossRefGoogle Scholar
  6. Brunner C A, Beall J M, Bentley S J, Furukawa Y (2006). Hypoxia hotspots in the Mississippi Bight. J Foraminiferal Res, 36(2): 95–107CrossRefGoogle Scholar
  7. Chang Y L, Oey L Y (2011). Loop Current cycle: coupled response of the Loop Current with deep flows. J Phys Oceanogr, 41(3): 458–471CrossRefGoogle Scholar
  8. Chang Y L, Oey L Y (2013). Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea, and the potential impact on Loop Current’s interannual variability. J Phys Oceanogr, 43(7): 1325–1344CrossRefGoogle Scholar
  9. Chao X, Shankar N J, Cheong H F (2001). Two- and three-dimensional oil spill model for coastal waters. Ocean Eng, 28(12): 1557–1573CrossRefGoogle Scholar
  10. Charnock H (1955). Wind stress over a water surface. Q J R Meteorol Soc, 81(350): 639–640CrossRefGoogle Scholar
  11. Chassignet E P, Hurlburt H E, Metzger E J, Smedstad OM, Cummings J, Halliwell G R, Bleck R, Baraille R, Wallcraft A J, Lozano C, Tolman H L, Srinivasan A, Hankin S, Cornillon P, Weisberg A, Barth R, He R, Werner F, Wilkin J (2009). U.S. GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography (Wash DC), 22(2): 64–75CrossRefGoogle Scholar
  12. Chassignet E P, Hurlburt H E, Smedstad O M, Barron C N, Ko D S, Rhodes R C, Shriver J F, Wallcraft J, Arnone R A (2005). Assessment of data assimilative ocean models in the Gulf of Mexico using ocean color. In Sturges W, Lugo-Fernandez A, eds. Circulation in the Gulf of Mexico: Observations and Models. Geophysical Monograph Series, 161: 87–100CrossRefGoogle Scholar
  13. Cummings J (2005). Operational multivariate ocean data assimilation. Q J R Meteorol Soc, 131(613): 3583–3604CrossRefGoogle Scholar
  14. D’Sa E J, Ko D S (2008). Short-term influences on suspended particulate matter distribution in the northern Gulf of Mexico: satellite and model observations. Sensors (Basel Switzerland), 8(7): 4249–4264CrossRefGoogle Scholar
  15. D’Sa E J, Korobkin M, Ko D S (2011). Effects of Hurricane Ike on the Louisiana-Texas coast from satellite and model data. Remote Sensing Letters, 2(1): 11–19CrossRefGoogle Scholar
  16. Dietrich J C, Trahan C J, Howard MT, Fleming J G, Weaver R J, Tanaka S, Yu L, Luettich R A Jr, Dawson C N, Westerink J J, Wells G, Lu A, Vega K, Kubach A, Dresback KM, Kolar R L, Kaiser C, Twilley R R (2012). Surface trajectories of oil transport along the northern coastline of the Gulf of Mexico. Cont Shelf Res, 41: 17–47CrossRefGoogle Scholar
  17. Dimou N K, Adams E E (1993). A random-walk, particle tracking model for well-mixed estuaries and coastal waters. Estuar Coast Shelf Sci, 37(1): 99–110CrossRefGoogle Scholar
  18. Dykes J D (2011). Implementation of the automated numerical model performance metrics system. Tech. Rep. NRL/MR/7320-11-9353, Naval Research Laboratory, Stennis Space Center, MS, 31 ppGoogle Scholar
  19. Galt J A (1994). Trajectory analysis for oil spills. Journal of Advanced Marine Technology Conference, 11: 91–126Google Scholar
  20. Green R E, Gould R W Jr, Ko D S (2008). Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico. Cont Shelf Res, 28(10–11): 1273–1285CrossRefGoogle Scholar
  21. Gundlach E R, Finkelstein K J, Sadd J L (1981). Impact and persistence of Ixtoc I oil on the South Texas Coast. In Proceedings: 1981 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), Atlanta, GA, 477–485Google Scholar
  22. Haltrin V I, Arnone R A, Flynn P, Casey B, Weidemann A D, Ko D S (2007). Restoring number of suspended particles in ocean using satellite optical images and forecasting particle fields. Proceedings of SPIE-The International Society for Optical Engineering, pp 6615Google Scholar
  23. Hanson B, Klink K, Matsuura K, Robeson S M, Willmott C J (1992). Vector correlation: review, exposition, and geographic application. Ann Assoc Am Geogr, 82(1): 103–116CrossRefGoogle Scholar
  24. Harding J, Cross S, Bub F M J, Carleton C, Tolman H, Parsons A R (2013). OceanNOMADS- an update: real-time and retrospective access to operational U.S. ocean prediction products. 11th Symposium on the Coastal Environment at the 93rd Annual Meeting of the American Meteorology Society, Austin, TXGoogle Scholar
  25. Hernandez F, Bertino L, Brassington G, Chassignet E, Cummings J, Davidson F, Dre’villon M, Garric G, Kamachi M, Lellouche J M, Mahdon R, Martin M J, Ratsimandresy A, Regnier C (2009). Validation and intercomparison studies within GODAE. Oceanogr Mag, 22(3): 128–143CrossRefGoogle Scholar
  26. Hodur R M (1997). The Naval Research Laboratorys Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon Weather Rev, 125(7): 1414–1430CrossRefGoogle Scholar
  27. Hodur R M, Hong X, Doyle J D, Pullen J, Cummings J, Martin P, Rennick M A (2002). The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Oceanography (Wash DC), 15(1): 88–98CrossRefGoogle Scholar
  28. Hunter J R, Craig P D, Phillips H E (1993). On the use of random walk models with spatially variable diffusivity. J Comput Phys, 106(2): 366–376CrossRefGoogle Scholar
  29. Jacobs G A, Barron C N, Fox D N, Whitmer K R, Klingenberger S, May D, Blaha J P (2002). Operational altimeter sea level products. Oceanography (Wash DC), 15(1): 13–21CrossRefGoogle Scholar
  30. Ko D S, Martin P J, Rowley C D, Preller R H (2008). A real-time coastal ocean prediction experiment for MREA04. J Mar Syst, 69(1–2): 17–28CrossRefGoogle Scholar
  31. Ko D S, Preller R H, Martin P J (2003). An experimental real-time Intra Americas Sea ocean nowcast/forecast system for coastal prediction. In Proceedings, AMS 5th Conference on Coastal Atmospheric and Oceanic Prediction and Processes, Seatlle, WA, p. 5.2Google Scholar
  32. Ko D S, Wang D P (2014). Intra-Americas Sea Nowcast/Forecast System Ocean Reanalysis to Support Improvement of Oil-Spill Risk Analysis in the Gulf of Mexico by Multi-Model Approach. Tech. Rep. Prepared under BOEM contract M12PG00030, Naval Research Laboratory. Available at: Google Scholar
  33. Kundu P K (1976). Ekman veering observed near the ocean bottom. Journal of Physical Oceanography, 6, 238–242CrossRefGoogle Scholar
  34. Larsen J C, Sanford T B (1985). Florida Current volume transports from voltage measurements. Science, 227: 302–304CrossRefGoogle Scholar
  35. Le Hénaff M, Kourafalou V H, Paris C B, Helgers J, Aman Z M, Hogan P J, Srinivasan A (2012). Surface evolution of the Deepwater Horizon oil spill patch: combined effects of circulation and windinduced drift. Environ Sci Technol, 46(13): 7267–7273CrossRefGoogle Scholar
  36. Liu Y, MacFadyen A, Ji Z, Weisberg R (2011). Introduction to monitoring and modeling the Deepwater Horizon oil spill. In: Liu Y, MacFadyen A, Ji Z, Weisberg R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 1–7CrossRefGoogle Scholar
  37. Lubchenco J, McNutt M K, Dreyfus G, Murawski S A, Kennedy D M, Anastas P T, Chu S, Hunter T (2012). Science in support of the Deepwater Horizon response. Proc Natl Acad Sci USA, 109(50): 20212–20221CrossRefGoogle Scholar
  38. Luettich R, Wright D L, Signell R, Friedrichs C, Friedrichs M, Harding J, Fennel K, Howlett E, Graves S, Smith E, Crane G, Baltes R (2013). Introduction to special issue on The U.S. IOOS Coastal and Ocean Modeling Testbed: overview of its motivation, goals, implementation and scope. J Geophys Res, 118: 6319–6328CrossRefGoogle Scholar
  39. Lugo-Fernández A, Leben R R (2010). On the linear relationship between Loop Current retreat latitude and eddy separation period. J Phys Oceanogr, 40(12): 2778–2784CrossRefGoogle Scholar
  40. MacFadyen A, Watabayashi G, Barker C, Beegle-Krause C J (2011). Tactical modeling of surface oil transport during the Deepwater Horizon spill response. In: Liu Y, MacFadyen A, Ji Z, Weisberg R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 167–178CrossRefGoogle Scholar
  41. Martin P J (2000). Description of the Navy Coastal Ocean Model Version 1.0. Tech. Rep. NRL/FR/7322-00-9962, Naval Research Laboratory, Stennis Space Center, MS, 42Google Scholar
  42. Mendoza W G, Zika R G, Corredor J E, Ko D S, Mooers C N (2009). Developmental strategy for effective sampling to detect possible nutrient fluxes in oligotrophic coastal reef waters in the Caribbean. Journal of Operational Oceanography, 2: 35–47Google Scholar
  43. Mooers C N, Meinen C S, Baringer MO, Bang I, Rhodes R, Barron C N, Bub F (2005). Cross validating ocean prediction and monitoring systems. Eos Trans AGU, 86(29): 269–273CrossRefGoogle Scholar
  44. Morey S L, Martin P J, O’Brien J J, Wallcraft A A, Zavala-Hidalgo J (2003). Export pathways for river discharged fresh water in the northern Gulf of Mexico. J Geophys Res, 108(C10): 3303CrossRefGoogle Scholar
  45. Naeije M, Doornbos E, Mathers L, Scharroo R, Schrama E, Visser P (2002). Radar Altimeter Database System: exploitation and extension (RADSxx). Tech. Rep. NUSP-2 report 02-06, NUSP-2 project 6.3/IS-66, Delft Institute for Earth-Oriented Space Research (DEOS), Delft, Netherlands. ISBN 90-5623-077-8Google Scholar
  46. Peggion G, Barron C, Rowley C (2007). A rapidly relocatable ocean prediction system. Tech. Rep. NRL/PP/7320-06-6212, Naval Research Laboratory, Stennis Space Center, MS, 5Google Scholar
  47. Pichevin T, Nof D (1997). The momentum imbalance paradox. Tellus, 49: 298–319CrossRefGoogle Scholar
  48. Powell B S, Leben R R (2004). An optimal filter for geostrophic mesoscale currents from along-track satellite altimetry. J Atmos Ocean Technol, 21(10): 1633–1642CrossRefGoogle Scholar
  49. Powell M D, Houston S H, Reinhold T A (1996). Hurricane Andrews landfall in South Florida. Part I: standardizing measurements for documentation of surface wind fields. Weather Forecast, 11(3): 304–328CrossRefGoogle Scholar
  50. Price J M, Johnson W R, Marshall C F, Ji Z G, Rainey G B (2003). Overview of the Oil Spill Risk Analysis (OSRA) model for environmental impact assessment. Spill Sci Technol Bull, 8(5–6): 529–533CrossRefGoogle Scholar
  51. Rabalais N N, Turner R E, Wiseman W J Jr (2001). Hypoxia in the Gulf of Mexico. J Environ Qual, 30(2): 320–329CrossRefGoogle Scholar
  52. Rhodes R C, Hurlburt H E, Wallcraft A J, Barron C N, Martin P J, Smedstad O M, Cross S, Metzger E J, Shriver J, Kara A, Ko D S (2002). Navy real-time global modeling system. Oceanography, 15: 29–43CrossRefGoogle Scholar
  53. Rosmond T E, Teixeira J, Peng M, Hogan T F, Pauley R (2002). Navy Operational Global Atmospheric Prediction System (NOGAPS): forcing for ocean models. Oceanography, 15(1): 99–108CrossRefGoogle Scholar
  54. Schmitz W J Jr, Biggs D C, Lugo-Fernandez A, Oey L Y, Sturges W (2005). A synopsis of the circulation in the Gulf of Mexico and on its continental margins. In: Sturges W, Lugo-Fernandez A, eds. Circulation in the Gulf of Mexico: Observations and Models. Geophysical Monograph Series, 161: 11–30CrossRefGoogle Scholar
  55. Shay L K, Jaimes B, Brewster J K, Meyers P, McCaskill E C, Uhlhorn E, Marks F, Halliwell G R Jr, Smedstad OM, Hogan P (2011). Airborne ocean surveys of the Loop Current complex from NOAA WP-3D in support of the Deepwater Horizon oil spill. In: Liu Y, MacFadyen A, Ji Z, Weisberg R, eds. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, 195: 131–151CrossRefGoogle Scholar
  56. Shoosmith D R, Baringer M O, Johns W E (2005). A continuous record of Florida Current temperature transport at 27°N. Geophys Res Lett, 32(23): L23603CrossRefGoogle Scholar
  57. Sturges W, Hoffmann N, Leben R (2010). A trigger mechanism for loop current ring separations. J Phys Oceanogr, 40(5): 900–913CrossRefGoogle Scholar
  58. van Leeuwen P J, de Ruijter W P (2009). On the steadiness of separating meandering currents. J Phys Oceanogr, 39(2): 437–448CrossRefGoogle Scholar
  59. Vukovich F M (2005). Climatology of ocean features in the gulf of mexico: final report. Tech. Rep. OCS Study MMS 2005-031, New Orleans, LAGoogle Scholar
  60. Wilson W D, Johns W E (1997). Velocity structure and transport in the Windward Islands Passages. Deep-Sea Res, 44(3): 487–520CrossRefGoogle Scholar
  61. Wu J (1983). Sea-surface drift currents induced by wind and waves. J Phys Oceanogr, 13(8): 1441–1451CrossRefGoogle Scholar
  62. Xu F H, Chang Y L, Oey L Y, Hamilton P (2013). Loop Current growth and eddy shedding using models and observations: analyses of the July 2011 eddy-shedding event. Journal of Physical Oceanography, 43, 1015–1027CrossRefGoogle Scholar
  63. Zavala-Hidalgo J, Morey S L, OBrien J J (2003). Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J Geophys Res, 108(C12): 3389CrossRefGoogle Scholar
  64. Zhang A, Hess K W, Wei E, Myers E (2006). Implementation of model skill assessment software for water level and current in tidal regions. Tech. Rep. NOS CS 24, NOAA, 61 ppGoogle Scholar
  65. Zhang A, Hess K W, Aikman F (2010). User-based skill assessment techniques for operational hydrodynamicforecast systems. Journal of Operational Oceanography, 3, 11–24Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Edward D. Zaron
    • 1
    Email author
  • Patrick J. Fitzpatrick
    • 2
  • Scott L. Cross
    • 3
  • John M. Harding
    • 4
  • Frank L. Bub
  • Jerry D. Wiggert
    • 5
  • Dong S. Ko
    • 6
  • Yee Lau
    • 2
  • Katharine Woodard
    • 2
    • 5
  • Christopher N. K. Mooers
    • 1
  1. 1.Department of Civil and Environmental EngineeringPortland State UniversityPortlandUSA
  2. 2.Geosystems Research InstituteMississippi State University, MSU Science & Technology Center, Stennis Space CenterHancock CountyUSA
  3. 3.NOAA National Coastal Data Development Center, Stennis Space CenterHancock CountyUSA
  4. 4.Northern Gulf InstituteMississippi State University, MSU Science & Technology Center, Stennis Space CenterHancock CountyUSA
  5. 5.Department of Marine ScienceUniversity of Southern Mississippi, Stennis Space CenterHancock CountyUSA
  6. 6.Oceanography DivisionNaval Research Laboratory, Stennis Space CenterHancock CountyUSA

Personalised recommendations