Skip to main content
Log in

Post-VMS mineralization deformations (1880–1820 Ma) of the Skellefte district (Sweden): insights from the spatial pattern of VMS occurrences

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

In the last two to three decades or so, the spatial pattern of mineral occurrences of a deposit-type has been studied to derive insights to mineralization controls and assist mineral exploration. In the Skellefte district, Fry plots of volcanogenic massive sulfide (VMS) mines/prospects reveal patterns that are likely due to postmineralization deformation events. The fractal dimensions of the spatial patterns of the present-day VMS mines/prospects and that of the ‘original’ VMS deposits support the concept that spatial patterns of mineral deposits are spatially-invariant. Therefore, analysis of the spatial pattern of mineral deposits is useful not only in research about pre- and syn-mineralization geological settings but also post-mineralization geological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agterberg F P, Cheng Q, Wright D F (1993). Fractal modeling of mineral deposits. In: Proceedings APCOM Symposium, 24th, Canadian Institute of Mining, Metallurgy, and Petroleum Engineers, volume 1, Montreal: Canadian Institute of Mining, Metallurgy and Petroleum Engineering, 43–53

    Google Scholar 

  • Allen R L, Weihed P, and the Global VHMS Research Project Team (2002). Global comparison of volcanic-associated massive sulphide districts. In: Blundell D J, Neubauer F, Von Quadt A, eds. The Timing and Location of Major Ore Deposits in an Evolving Orogen. London: Geological Society [London] Special Publications 204, 13–37

    Google Scholar 

  • Allen R L, Weihed P, Svenson S Å (1996). Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ Geol, 91(6): 1022–1053

    Article  Google Scholar 

  • Bergman Weihed J (2001). Palaeoproterozoic deformation zones in the Skellefte and Arvidsjaur areas, northern Sweden. In: Weihed P, ed. Economic Geology Research, volume 1, 1999–2000. Uppsala: Sveriges Geologiska Undersökning Research Paper C 833, 46–68

    Google Scholar 

  • Billström K, Weihed P (1996). Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte District, northern Sweden. Econ Geol, 91(6): 1054–1072

    Article  Google Scholar 

  • Blenkinsop T G, Sanderson D (1999). Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton. London: Geological Society [London] Special Publications, 155: 141–151

    Google Scholar 

  • Boots B N, Getis A (1988). Point Pattern Analysis. Sage University Scientific Geography Series, No. 8. Beverly Hills: Sage Publications

    Google Scholar 

  • Carlson C A (1991). Spatial distribution of ore deposits. Geology, 19(2): 111–114

    Article  Google Scholar 

  • Carranza E JM(2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geol Rev, 35(3–4): 383–400

    Article  Google Scholar 

  • Carranza E J M (2009b). Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity. Comput Geosci, 35(10): 2032–2046

    Article  Google Scholar 

  • Carranza E J M, Sadeghi M (2010). Predictive mapping of prospectivity and quantitative estimation of undiscovered VMS deposits in Skellefte district (Sweden). Ore Geol Rev, 38(3): 219–241

    Article  Google Scholar 

  • Cheng Q, Agterberg F P (1995). Multifractal modeling and spatial point processes. Math Geol, 27(7): 831–845

    Article  Google Scholar 

  • Fry N (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60(1–2): 89–105

    Article  Google Scholar 

  • Galley A G, Hannington M D, Jonasson I R (2007). Volcanogenic massive sulphide deposits. In: Goodfellow W D, ed. Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Montreal: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, 141–161

    Google Scholar 

  • Juhlin C, Elming S Å, Mellqvist C, Öhlander B, Weihed P, Wikström A (2002). Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implication for the tectonic evolution of the area. Geophys J Int, 150(1): 180–197

    Article  Google Scholar 

  • Kathol B, Weihed P (2005). Description of Regional Geological and Geophysical Maps of the Skellefte District and Surrounding Areas. Uppsala: Sveriges Geologiska Undersökning Ba 57

    Google Scholar 

  • Lundberg B (1980). Aspects of the geology of Skellefte field, northern Sweden. Geol Foren Stockh Forh, 102(2): 156–166

    Article  Google Scholar 

  • Mandelbrot B B (1982) The Fractal Geometry of Nature. New York: Freeman

    Google Scholar 

  • Mandelbrot B B (1985). Self-affine fractals and fractal dimension. Phys Scr, 32(4): 257–260

    Article  Google Scholar 

  • Nironen M (1997). The Svecofennian Orogen: a tectonic model. Precambrian Res, 86(1–2): 21–44

    Article  Google Scholar 

  • Raines G L (2008). Are fractal dimensions of the spatial distribution of mineral deposits meaningful? Nat Resour Res, 17(2): 87–97

    Article  Google Scholar 

  • Rickard D T, Zweifel H (1975). Genesis of Precambrian sulfide ores, Skellefte District, Sweden. Econ Geol, 70(2): 255–274

    Article  Google Scholar 

  • Rutland R W R, Kero L, Nilsson G, Stølen K (2001a). Nature of a major tectonic discontinuity in the Svecofennian province of northern Sweden. Precambrian Res, 112(3–4): 211–237

    Article  Google Scholar 

  • Rutland RWR, Skiöld T, Page RW (2001b). Age deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer. Precambrian Res, 112(3–4): 239–259

    Article  Google Scholar 

  • Skiöld T, Rutland R W R (2006). Successive ∼1.94 Ga plutonism and ∼1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: substantiation of the marginal basin accretion hypothesis of Svecofennian evolution. Precambrian Res, 148(3–4): 181–204

    Article  Google Scholar 

  • Skyttä P, Bauer T E, Tavakoli S, Hermansson T, Andersson J, Weihed P (2012). Pre-1987 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeoproterozoic Skellefte district, Sweden. Precambrian Res, 206–207: 109–136

    Article  Google Scholar 

  • Skyttä P, Hermansson T, Andersson J, Weihed P (2011). New zircon data supporting models of short-lived igneous activity at 1.89 of the western Skellefte District, central Fennoscandian Shield. Solid Earth Discuss, 3(1): 355–383

    Article  Google Scholar 

  • Skyttä P, Hermansson T, Elming S Å, Bauer T (2010). Magnetic fabrics as constraints on the kinematic history of a pre-tectonic granitoid intrusion, Kristineberg, northern Sweden. J Struct Geol, 32(8): 1125–1136

    Article  Google Scholar 

  • Stubley M P (2004). Spatial distribution of kimberlite in the Slave craton, Canada: a geometrical approach. Lithos, 77(1–4): 683–693

    Article  Google Scholar 

  • Turcotte D L (1997). Fractals and Chaos in Geology and Geophysics (2nd edition). Cambridge: Cambridge University Press

    Book  Google Scholar 

  • Vearncombe J, Vearncombe S (1999). The spatial distribution of mineralization: applications of Fry analysis. Econ Geol, 94(4): 475–486

    Article  Google Scholar 

  • Vivallo W (1987). Early Proterozoic bimodal volcanism, hydrothermal activity, and massive sulphide deposition in the Boliden-Långdal area, Skellefte District, Sweden. Econ Geol, 82(2): 440–456

    Article  Google Scholar 

  • Weinberg R F, Hodkiewicz P F, Groves D I (2004). What controls gold distribution in Archean terranes?. Geology, 32(7): 545–548

    Article  Google Scholar 

  • Weihed P, Arndt N, Billström K, Duchesne J C, Eilu P, Martinsson O, Papunen H, Lahtinen R (2005). Precambrian geodynamics and ore formation: the Fennoscandian Shield. Ore Geol Rev, 27(1–4): 273–322

    Article  Google Scholar 

  • Weihed P, Bergman J, Bergström U (1992). Metallogeny and tectonic evolution of the Early Proterozoic Skellefte district, northern Sweden. Precambrian Res, 58(1–4): 143–167

    Article  Google Scholar 

  • Weihed P, Billström K, Persson P O, Bergman Weihed J (2002). Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. Geol Foren Stockh Forh, 124: 163–180

    Google Scholar 

  • Welin E (1987). The depositional evolution of the Svecofennian supracrustal sequence in Finland and Sweden. Precambrian Res, 35: 95–113

    Article  Google Scholar 

  • Zuo R, Agterberg F P, Cheng Q, Yao L (2009a). Fractal characterization of the spatial distribution of geological point processes. Int J Appl Earth Obs Geoinf, 11(6): 394–402

    Article  Google Scholar 

  • Zuo R, Cheng Q, Agterberg F P, Xia Q (2009b). Evaluation of the uncertainty in estimation of metal resources of skarn tin in Southern China. Ore Geol Rev, 35(3–4): 415–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel John M. Carranza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carranza, E.J.M., Sadeghi, M. Post-VMS mineralization deformations (1880–1820 Ma) of the Skellefte district (Sweden): insights from the spatial pattern of VMS occurrences. Front. Earth Sci. 8, 319–324 (2014). https://doi.org/10.1007/s11707-014-0466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0466-3

Keywords

Navigation