Skip to main content
Log in

Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang B W (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867–871

    Article  Google Scholar 

  • Ang BW, Liu F L (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6): 537–548

    Article  Google Scholar 

  • Ang B W, Liu F L, Chew E P (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14): 1561–1566

    Article  Google Scholar 

  • Ang B W, Zhang F Q, Choi K H (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6): 489–495

    Article  Google Scholar 

  • Casler S, Rose A (1998). Carbon dioxide emissions in the U.S. economy: a structural decomposition analysis. Environ Resour Econ, 11(3/4): 349–363

    Article  Google Scholar 

  • Chen G Q, Guo S, Shao L, Li J S, Chen Z M (2013). Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul, 18(9): 2493–2506

    Article  Google Scholar 

  • Chen G Q, Shao L, Chen Z M, Li Z, Zhang B, Chen H, Wu Z (2011a). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622–628

    Article  Google Scholar 

  • Chen G Q, Zhang B (2010). Greenhouse gas emissions in China 2007: inventory and input-output analysis. Energy Policy, 38(10): 6180–6193

    Article  Google Scholar 

  • Chen Q, Kang C, Xia Q, Guan D (2011b). Preliminary exploration on low-carbon technology roadmap of China’s power sector. Energy, 36(3): 1500–1512

    Article  Google Scholar 

  • Chen Z M, Chen G Q (2011). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899–2909

    Article  Google Scholar 

  • Davis S J, Caldeira K (2010). Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci USA, 107(12): 5687–5692

    Article  Google Scholar 

  • Friedlingstein P, Houghton R A, Marland G, Hackler J, Boden T A, Conway T J, Canadell J G, Raupach M R, Ciais P, Le Quéré C (2010). Update on CO2 emissions. Nat Geosci, 3(12): 811–812

    Article  Google Scholar 

  • Geng Y, Zhao H, Liu Z, Xue B, Fujita T, Xi F (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: a case of Liaoning. Energy Policy, 60: 820–826

    Article  Google Scholar 

  • Glomsrød S, Wei T Y (2005). Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?. Energy Policy, 33(4): 525–542

    Article  Google Scholar 

  • Guan D, Hubacek K, Weber C L, Peters G P, Reiner D M (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change, 18(4): 626–634

    Article  Google Scholar 

  • Guan D, Peters G P, Weber C L, Hubacek K (2009). Journey to world top emitter—An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys Res Lett, 36(4): L04709

    Article  Google Scholar 

  • Hoekstra R, van den Bergh J C J M (2003). Comparing structural decomposition analysis and index. Energy Econ, 25(1): 39–64

    Article  Google Scholar 

  • Larson E D, Wu Z X, DeLaquil P, Chen W Y, Gao P F (2003). Future implications of China’s energy-technology choices. Energy Policy, 31(12): 1189–1204

    Article  Google Scholar 

  • Lee C F, Lin S J (2001). Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy, 29(3): 237–244

    Article  Google Scholar 

  • Li C, Ge X, Zheng Y, Xu C, Ren Y, Song C, Yang C (2013a). Technoeconomic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy, 55: 263–272

    Article  Google Scholar 

  • Li J S, Chen G Q, Lai T M, Ahmad B, Chen Z M, Shao L, Ji X (2013b). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819–833

    Article  Google Scholar 

  • Liang S, Xu M, Suh S, Tan R R (2013). Unintended environmental consequences and co-benefits of economic restructuring. Environ Sci Technol, 47(22): 12894–12902

    Article  Google Scholar 

  • Liang S, Zhang T (2011a). Interactions of energy technology development and new energy exploitation with water technology development in China. Energy, 36(12): 6960–6966

    Article  Google Scholar 

  • Liang S, Zhang T (2011b). What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39(11): 7078–7083

    Article  Google Scholar 

  • Liao H, Fan Y, Wei Y M (2007). What induced China’s energy intensity to fluctuate: 1997–2006? Energy Policy, 35(9): 4640–4649

    Article  Google Scholar 

  • Lin J, Liu Y, Meng F, Cui S, Xu L (2013). Using hybrid method to evaluate carbon footprint of Xiamen City, China. Energy Policy, 58: 220–227

    Article  Google Scholar 

  • Liu L C, Fan Y, Wu G, Wei Y M (2007). Using LMDI method to analyzed the change of China’s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy, 35(11): 5892–5900

    Article  Google Scholar 

  • Liu Z, Geng Y, Lindner S, Guan D (2012). Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy, 45(1): 1059–1068

    Article  Google Scholar 

  • Lu Y, Stegman A, Cai Y (2013). Emissions intensity targeting: from China’s 12th Five Year Plan to its Copenhagen commitment. Energy Policy, 61: 1164–1177

    Article  Google Scholar 

  • Ma C, Stern D I (2008). Biomass and China’s carbon emissions: a missing piece of carbon decomposition. Energy Policy, 36(7): 2517–2526

    Article  Google Scholar 

  • Ma Z, Xue B, Geng Y, Ren W, Fujita T, Zhang Z, Puppim de Oliveira J A, Jacques D A, Xi F (2013). Co-benefits analysis on climate change and environmental effects of wind-power: a case study from Xinjiang, China. Renew Energy, 57: 35–42

    Article  Google Scholar 

  • Mahony T O (2013). Decomposition of Ireland’s carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy, 59: 573–581

    Article  Google Scholar 

  • Raupach M R, Marland G, Ciais P, Le Quéré C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA, 104(24): 10288–10293

    Article  Google Scholar 

  • Rose A, Casler S (1996). Input-output structural decomposition analysis: a critical appraisal. Econ Syst Res, 8(1): 33–62

    Article  Google Scholar 

  • Steckel J C, Jakob M, Marschinski R, Luderer G (2011). From carbonization to decarbonization? Past trends and future scenarios for China’s CO2 emissions. Energy Policy, 39(6): 3443–3455

    Article  Google Scholar 

  • Tian X, Chang M, Tanikawa H, Shi F, Imura H (2013). Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy, 53: 279–286

    Article  Google Scholar 

  • Wang C, Chen J N, Zou J (2005). Decomposition of energy-related CO2 emission in China: 1957–2000. Energy, 30(1): 73–83

    Article  Google Scholar 

  • Wang C, Wang F, Li L, Zhang X (2013a). Wake-up call for China to reevaluate its shale-gas ambition. Environ Sci Technol, 47(21): 11920–11921

    Article  Google Scholar 

  • Wang C, Wang F, Wang Q, Yang D, Li L, Zhang X (2013b). Preparing for Myanmar’s environment-friendly reform. Environ Sci Policy, 25: 229–233

    Article  Google Scholar 

  • Wang C, Wang Q, Wang F (2012). Is Vietnam ready for nuclear power?. Environ Sci Technol, 46(10): 5269–5270

    Article  Google Scholar 

  • Wang Y, Liang S (2013). Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 58: 90–96

    Article  Google Scholar 

  • Wang Y, Zhao H, Li L, Liu Z, Liang S (2013c). Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58: 312–318

    Article  Google Scholar 

  • Wu L B, Kaneko S, Matsuoka S (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3): 319–335

    Article  Google Scholar 

  • Xi F, Geng Y, Chen X, Zhang Y, Wang X, Xue B, Dong H, Liu Z, Ren W, Fujita T, Zhu Q (2011). Contributing to local policy making on GHG emission reduction through inventorying and attribution: a case study of Shenyang, China. Energy Policy, 39(10): 5999–6010

    Article  Google Scholar 

  • Xia X H, Huang G T, Chen G Q, Zhang B, Chen Z M, Yang Q (2011). Energy security, efficiency and carbon emission of Chinese industry. Energy Policy, 39(6): 3520–3528

    Article  Google Scholar 

  • Xu J H, Fleiter T, Eichhammer W, Fan Y (2012). Energy consumption and CO2 emissions in China’s cement industry: a perspective from LMDI decomposition analysis. Energy Policy, 50: 821–832

    Article  Google Scholar 

  • Zhang M, Mu H, Ning Y (2009a). Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy, 37(3): 767–773

    Article  Google Scholar 

  • Zhang M, Mu H, Ning Y, Song Y (2009b). Decomposition of energyrelated CO2 emission over 1991–2006 in China. Ecol Econ, 68(7): 2122–2128

    Article  Google Scholar 

  • Zhang Z, Guo J, Qian D, Xue Y, Cai L (2013). Effects and mechanism of influence of China’s resource tax reform: a regional perspective. Energy Econ, 36: 676–685

    Article  Google Scholar 

  • Zhao M, Tan L, Zhang W, Ji M, Liu Y, Yu L (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35(6): 2505–2510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjian Wang or Xiaolei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, X., Wang, F. et al. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations. Front. Earth Sci. 9, 65–76 (2015). https://doi.org/10.1007/s11707-014-0442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0442-y

Keywords

Navigation