Skip to main content
Log in

Distribution, geochemistry and age of the Millennium eruptives of Changbaishan volcano, Northeast China — A review

  • Review Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

Large explosive volcanic eruptions generate extensive regional tephra deposits that provide favorable conditions for identifying the source of volcanoes, comparing the sedimentary strata of a region and determining their ages. The tephra layer, referred to as B-Tm, generated by the Millennium eruption of Changbaishan volcano, is widely distributed in Northeast China, Japan, D.P.R. Korea, and the nearby coastal area of Russia. It forms part of the widespread northeast Asian strata and is significant for establishing an isochronal stratigraphic framework. However, research on the temporal characterization and stratigraphic correlation of associated strata using this tephra layer is mainly concentrated in and near Japan. In northeastern China, this tephra layer is seldom seen and its application in stratigraphic correlations is even rarer. More importantly, the determination of accurate ages for both distal and proximal tephras has been debated, leading to controversy in discussions of its environmental impacts. Stratigraphic records from both distal and proximal Changbaishan ash show that this eruption generally occurred between 1,012 and 1,004 cal yr BP. Geochemical comparison between Changbaishan ash and the Quaternary widespread ash around Japan illustrates that Changbaishan ash is a continuous composition from rhyolitic to trachytic and its ratio of FeOT to CaO is usually greater than 4, which can be used as a distinguishing identifier among worldwide contemporary eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki K, Machida H (2006). Major element composition of volcanic glass shards in the late Quaternary widespread tephras in Japan-Distinction of tephras using K2O-TiO2 diagrams. Bulletin of the Geological Survey of Japan, 57(7/8): 239–258 (in Japanese)

    Google Scholar 

  • Borchardt G A, Aruscavage P J, Millard H T (1972). Correlation of the Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. J Sediment Res, 42(2): 301–306

    Google Scholar 

  • Cheng S, Mao X, Wang F, Hong Y, Zhu Y, An Q (2008). Tephra discovered in high resolution peat sediment and its indication to climatic event. Journal of China University of Geosciences, 19(2): 174–183

    Article  Google Scholar 

  • Chichagov V P, Muk R K, Cherkinsky A E, Chichagova O A (1989). Radiocarbon age of trees buried by tephra from the Paektusan volcano in the north of Korea. Reports of the Russian Academy of Sciences, 306: 169–172 (in Russian)

    Google Scholar 

  • Chu K S, Tsuji Y, Baag C E, Kang T S (2011). Volcanic eruptions of Mt. Baekdu (Changbai) occurring in historical times. Bull Earthq Res Inst Univ Tokyo, 86(1/2): 11–27 (in Japanese)

    Google Scholar 

  • Cui Z, Jin D C, Li N (2000). The historical record discovery of 1199~1200AD large eruption of Changbaishan Tianchi volcano and its significance. Acta Petrol Sin, 16(2): 191–193 (in Chinese)

    Google Scholar 

  • Cui Z, Liu J Q (2006). The historical records about the extensive eruptions of the Tianchi volcano in Changbai Mountains during A. D. 1014~1019. Geological Review, 52(5): 624–627 (in Chinese)

    Google Scholar 

  • Cui Z, Liu J Q, Han C L (2008). Historical records on 1199~1201’s eruptions of the Changbai volcano. Geological Review, 54(4): 145–152 (in Chinese)

    Google Scholar 

  • Dunlap C (1996). Physical, chemical, and temporal relations among products of the 11th century eruption of Baitoushan, China/North Korea. In: University of California, Santa Cruz, United States, California, 1–215

    Google Scholar 

  • Fan Q (2008). History and evolution of Changbaishan volcano. Resources Survey and Environment, 29(3): 196–203 (in Chinese)

    Google Scholar 

  • Fan Q, Sui J, Sun Q, Li N, Wang T (2005). Preliminary research of magma mixing and explosive mechanism of the Millennium eruption of Tianchi volcano. Acta Petrol Sin, 21(6): 1703–1708 (in Chinese)

    Google Scholar 

  • Fei J, Zhou J (2006). The Possible Climatic impact in China of Iceland’s Eldgjá eruption inferred from historical Sources. Clim Change, 76(3–4): 443–457

    Article  Google Scholar 

  • Fei J, Zhou J, An Z (2004). Impact of the Eldgjá eruption of Iceland in the tenth century on palaeoclimate in China. Journal of Palaeogeography, 6(2): 241–251

    Google Scholar 

  • Fukusawa H, Tsukamoto S, Tsukamoto H, Ikeda M, Matsuoka M (1998). Falling age of Baegdusan-Tomakomai tephra (B-Tm) estimated by using non-glacial varves. Laguna, 5: 55–62 (in Japanese)

    Google Scholar 

  • Furuta T, Fujioka K, Arai F (1986). Widespread submarine tephras around Japan-Petrographic and chemical properties. Mar Geol, 72(1–2): 125–142

    Article  Google Scholar 

  • Gill J, Ramos F, Dunlap C (2013). Tianchi Volcano Millennium Eruption (VEI 7): differentiation processes and timescale. IAVCEI 2013 Scientific Assembly. Kagoshima, Japan, 1–807

    Google Scholar 

  • Guo Z, Liu J, Fan Q, He H, Sui S, Chu G, Liu Q, Negendank J F W (2005). Source of volcanic ash in the sediments of Sihailongwan maar, NE China, and its significance. Acta Petrol Sin, 21(1): 251–255 (in Chinese)

    Google Scholar 

  • Guo Z, Liu J, Sui S, Liu Q, He H, Ni Y (2002). The mass estimation of volatile emission during 1199/1200 AD eruption of Baitoushan volcano and its significance. Sci China Ser D, 45(6): 530–539

    Article  Google Scholar 

  • Hayakawa Y, Koyama M (1998). Dates of two major eruptions from Towada and Baitoushan in the 10th century. Bull Volcanol Soc Jpn, 43(5): 403–407

    Google Scholar 

  • Horn S, Schmincke H U (2000). Volatile emission during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD. Bull Volcanol, 61(8): 537–555

    Article  Google Scholar 

  • Hughes P D M, Mallon G, Brown A, Essex H J, Stanford J D, Hotes S (2013). The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quat Sci Rev, 67: 160–175

    Article  Google Scholar 

  • Ikehara K (2003). Late Quaternary seasonal sea-ice history of the northeastern Japan Sea. J Oceanogr, 59(5): 585–593

    Article  Google Scholar 

  • Ji F, Li J, Zheng R (1999). The preliminary study of TL chronology for recent eruptive materials in Changbaishan Tianchi volcano. Geological Review, 45(sup.): 282–286 (in Chinese)

    Google Scholar 

  • Jwa Y-J, Lee J-I, Zheng X (2003). A study on the eruption ages of Baekdusan: 1. Radiocarbon (14C) age for charcoal and wood samples Journal of the Geological Society of Korea, 39(3): 347–357 (in Korean)

    Google Scholar 

  • Kamite M, Yamada K, Saito-Kato M, Okuno M, Yasuda Y (2010). Microscopic observations of varve sediments from Lake Ni-no-Megata and Lake San-no-Megata, Oga Peninsula, NE Japan, with reference to the fallout age of the B-Tm Tephra. Journal of the Geological Society of Japan, 116(7): 349–359 (in Japanese)

    Article  Google Scholar 

  • Kuehn S C, Froese D G, Shane P A R (2011). The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: results and recommendations. Quat Int, 246(1–2): 19–47

    Article  Google Scholar 

  • Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Woolley A R, Zanettin B (1989). A classification of igneous rocks and a glossary of terms. Oxford: Blackwell Sciencific, 1–236

    Google Scholar 

  • Lim C, Toyoda K, Ikehara K, Peate D (2013). Late Quaternary tephrostratigraphy of Baegdusan and Ulleung volcanoes using marine sediments in the Japan Sea/East Sea. Quat Res, 80(1): 76–87

    Article  Google Scholar 

  • Liu J (1999). Volcanoes in China. Beijing: Science Press, 1–219 (in Chinese)

    Google Scholar 

  • Liu J, Taniguchi H (2001). Active volcanoes in China. Tohoku Ajia Kenkyu, 6: 173–189

    Google Scholar 

  • Liu J, Wang S (1982). Changbaishan volcano and the age of Tianchi. Chin Sci Bull, 21: 1312–1315 (in Chinese)

    Google Scholar 

  • Liu R, Qiu S, Cai L, Wei H, Yang Q, Xian Z, Bo G, Zhong J (1998a). The date of last large eruption of Changbaishan-Tianchi volcano and its significance. Sci China Ser D, 41(1): 69–74

    Article  Google Scholar 

  • Liu R, Wei H, Li J (1998b). The latest eruptions from Tianchi volcano, Changbaishan. Beijing: Science Press, 1–159 (in Chinese)

    Google Scholar 

  • Lowe D J (2011). Tephrochronology and its application: a review. Quat Geochronol, 6(2): 107–153

    Article  Google Scholar 

  • Lowe D J, Shane P A R, Alloway B V, Newnham R M (2008). Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZINTIMATE. Quat Sci Rev, 27(1–2): 95–126

    Article  Google Scholar 

  • Machida H (1999). The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan. Global Planet Change, 21(1–3): 71–94

    Article  Google Scholar 

  • Machida H, Arai F (1983). Extensive ash falls in and around the sea of Japan from large late quaternary eruptions. J Volcanol Geotherm Res, 18(1–4): 151–164

    Article  Google Scholar 

  • Machida H, Arai F (2003). Atlas of Tephra in and aroud Japan. Tokyo: University of Tokyo Press, 282–283 (in Japanese)

    Google Scholar 

  • Machida H, Mitsutani T (1994). Dendrochronological study on the eruption age of Changbai volcano, China and North Korea. Journal of the Geological Society of Japan, 103(3): 424–425 (in Japanese)

    Google Scholar 

  • Machida H, Moriwaki H, Zhao D C (1990). The recent major eruption of changbai volcano and its environmental effects. Geographical Reports of Tokyo Metropolitan University, 25(1): 1–20

    Google Scholar 

  • Machida H, Okumura K (2007). Recent large-scale explosive eruption of Baegdusan volcano: age of eruption and its effects on society. In: XVII INQUA Congress 2007. Cairns, Australia, 1–258

    Google Scholar 

  • Moebis A, Cronin S J, Neall V E, Smith I E (2011). Unravelling a complex volcanic history from fine-grained, intricate Holocene ash sequences at the Tongariro Volcanic Centre, New Zealand. Quat Int, 246(1–2): 352–363

    Article  Google Scholar 

  • Nakagawa M, Ishizuka Y, Kudo T, Yoshimoto M, Hirose W, Ishizaki Y, Gouchi N, Katsui Y, Solovyow A W, Steinberg G S, Abdurakhmanov A I (2002). Tyatya volcano, southwestern Kuril arc: recent eruptive activity inferred from widespread tephra. Isl Arc, 11(4): 236–254

    Article  Google Scholar 

  • Nakagawa M, Nishimoto J, Miyamoto T, Taniguchi H (2013). Magma system and its eruption processes of the caldera-forming 10th century eruption of Changbaishan (Baitoushan) volcano: inferred from petrological and geochemical characteristics. IAVCEI 2013 Scientific Assembly. Kagoshima, Japan, 1–806

    Google Scholar 

  • Nakamura T (2007). High-precision radiocarbon dating with accelerator mass spectrometry and calibration of radiocarbon ages. The Quaternary Research (Daiyonki-Kenkyu), 46(3): 195–204

    Article  Google Scholar 

  • Nakamura T, Okuno M, Kimura K, Mitsutani T, Moriwaki H, Ishizuka Y, Kim K H, Jing B L, Oda H, Minami M, Takada H (2007). Application of (14C) wiggle-matching to support dendrochronological analysis in Japan. Tree-Ring Research, 63(1): 37–46

    Article  Google Scholar 

  • Nanayama F, Furukawa R, Shigeno K, Makino A, Soeda Y, Igarashi Y (2007). Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sediment Geol, 200(3–4): 275–294

    Article  Google Scholar 

  • Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater B F, Shigeno K, Yamaki S (2003). Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature, 424(6949): 660–663

    Article  Google Scholar 

  • Nishimoto J, Nakagawa M, Miyamoto T, Taniguchi H (2010). Magma system of 10th century eruption of Baitoushan volcano: inferred from petrogical and geochemical characteristics. In: Taniguchi H ed. Earth Science of Baitoushan Volcano and Its Adjacent Area, Northeast China. Center for Northeast Asian Studies, Tohoku University Monograph series, 71–94 (in Japanese)

    Google Scholar 

  • Okuno M (2002). A review of chronological study of the B-Tm tephra. Summaries of Researches using AMS at Nagoya University, 13: 195–202 (in Japanese)

    Google Scholar 

  • Okuno M, Torii M, Yamada K, Shinozuka Y, Danhara T, Gotanda K, Yonenobu H, Yasuda Y (2011). Widespread tephras in sediments from lake Ichi-no-Megata in northern Japan: their description, correlation and significance. Quat Int, 246(1–2): 270–277

    Article  Google Scholar 

  • Óladóttir B A, Sigmarsson O, Larsen G, Devidal J L (2011). Provenance of basaltic tephra from Vatnajökull subglacial volcanoes, Iceland, as determined by major- and trace-element analyses. The Holocene, 21(7): 1037–1048

    Article  Google Scholar 

  • Rooney T O, Hart W K, Hall C M, Ayalew D, Ghiorso M S, Hidalgo P, Yirgu G (2012). Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contrib Mineral Petrol, 164(3): 407–426

    Article  Google Scholar 

  • Sawai Y, Fujii Y, Fujiwara O, Kamataki T, Komatsubara J, Okamura Y, Satake K, Shishikura M (2008). Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan Trench. The Holocene, 18(4): 517–528

    Article  Google Scholar 

  • Sawai Y, Kamataki T, Shishikura M, Nasu H, Okamura Y, Satake K, Thomson K H, Matsumoto D, Fujii Y, Komatsubara J, Aung T T (2009). Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. J Geophys Res, 114(B1): B01319

    Google Scholar 

  • Shane P (2000). Tephrochronology: a New Zealand case study. Earth Sci Rev, 49(1–4): 223–259

    Article  Google Scholar 

  • Shane P (2005). Towards a comprehensive distal andesitic tephrostratigraphic framework for New Zealand based on eruptions from Egmont volcano. J Quaternary Sci, 20(1): 45–57

    Article  Google Scholar 

  • Shane P, Nairn I, Martin S, Smith V (2008). Compositional heterogeneity in tephra deposits resulting from the eruption of multiple magma bodies: implications for tephrochronology. Quat Int, 178(1): 44–53

    Article  Google Scholar 

  • Shimano T, Miyamoto T, Nakagawa M, Ban M, Maeno F, Nishimoto J, Xu J, Taniguchi H (2005). Eruption mechanism of the 10th century eruption in Baitoushan volcano, China/North Korea. In: American Geophysical Union, Fall Meeting. 1–660

    Google Scholar 

  • Sohn Y K, Cronin S J, Brenna M, Smith I E M, Németh K, White J D L, Murtagh R M, Jeon Y M, Kwon C W (2012). Ilchulbong tuff cone, Jeju Island, Korea, revisited: a compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Geol Soc Am Bull, 124(3–4): 259–274

    Article  Google Scholar 

  • Stone R (2010). Volcanology. Is China’s riskiest volcano stirring or merely biding its time? Science, 329(5991): 498–499

    Article  Google Scholar 

  • Stone R (2011). Vigil at North Korea’s Mount Doom. Science, 334(6056): 584–588

    Article  Google Scholar 

  • Stothers R (1998). Far reach of the Tenth Century Eldgjá eruption, Iceland. Clim Change, 39(4): 715–726

    Article  Google Scholar 

  • Tokui Y (1989). Volcanic eruptions and their effects on human activity, in Hokkaido, Japan. Annals of Ochanomizu Geographical Society, 30: 27–33 (in Japanese)

    Google Scholar 

  • Tomlinson E L, Kinvig H S, Smith V C, Blundy J D, Gottsmann J, Müller W, Menzies M A (2012). The upper and lower Nisyros pumices: revisions to the Mediterranean tephrostratigraphic record based on micron-beam glass geochemistry. J Volcanol Geotherm Res, 243–244: 69–80

    Article  Google Scholar 

  • Turney C S M, Lowe J J (2001). Tephrochronology. In: Last W, Smol J eds. Tracking Environmental Change Using Lake Sediments. Springer Netherlands, 451–471

    Google Scholar 

  • Wada K, Nakamura M, Okuno M (2001). Identification of source volcano from the chemical Ccompositions of glasses from the widespread ashes in the surface layers of Asahidake volcano, Central Hokkaido, Japan. Reports of the Taisetsuzan Institute of Science, 35: 9–18 (in Japanese)

    Google Scholar 

  • Wan J, Zheng D (2000). Several notable problems on dating of young volcanic rocks by FT method-Illustrated by dating of Changbaishan volcanic rocks. Seismology and Geology, 22(sup): 19–24 (in Chinese)

    Google Scholar 

  • Wang F (2012). 40Ar/39Ar dating on millennial volcanic ejecta: lasing on the top pumice of Tianchi Crater, Changbaishan, Northeast China. Quat Int, 279–280: 526

    Google Scholar 

  • Wang F, Chen W, Peng Z, Li Q (2001). Activity of Cangbaishan Tianchi volcano since Late Pleistocene: The constrain from geochronology of high presicion U-series TIMS method. Geochimica, 30(1): 87–94 (in Chinese)

    Google Scholar 

  • Wang F, Chen W, Zicheng P, Zhang Z, Hu Y (1999). Chronology of young volcanic rocks of Changbaishan Tianchi and Tengchong, China, by using the Uranium-series TIMS method. Geological Review, 45(sup.): 914–925 (in Chinese)

    Google Scholar 

  • Wei H, Liu G, Gill J (2013). Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions. Bull Volcanol, 75(4): 1–14

    Article  Google Scholar 

  • Wei H, Sparks R S J, Liu R, Fan Q, Wang Y, Hong H, Zhang H, Chen H, Jiang C, Dong J, Zheng Y, Pan Y (2003). Three active volcanoes in China and their hazards. J Asian Earth Sci, 21(5): 515–526

    Article  Google Scholar 

  • Wei H, Wang Y, Jin J, Gao L, Yun S H, Jin B (2007). Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China. Lithos, 96(1–2): 315–324

    Article  Google Scholar 

  • Xu J, Pan B, Liu T, Hajdas I, Zhao B, Yu H, Liu R, Zhao P (2013). Climatic impact of the Millennium eruption of Changbaishan volcano in China: new insights from high-precision radiocarbon wiggle-match dating. Geophys Res Lett, 40(1): 54–59

    Article  Google Scholar 

  • Yamada K, Kamite M, Saito-Kato M, Okuno M, Shinozuka Y, Yasuda Y (2010). Late Holocene monsoonal-climate change inferred from Lakes Ni-no-Megata and San-no-Megata, northeastern Japan. Quat Int, 220(1–2): 122–132

    Article  Google Scholar 

  • Yatsuzuka S, Okuno M, Nakamura T, Kimura K, Setoma Y, Miyamoto T, Kim K H, Moriwaki H, Nagase T, Jin X, Jin B L, Takahashi T, Taniguchi H (2010). 14C wiggle-matching of the B-Tm tephra, Baitoushan volcano, China/North Korea. Radiocarbon, 52(3): 933–940

    Google Scholar 

  • Yin G, Ye Y, Wan J, Sun Y, Chen W, Diao S (1999). Electron spin resonance (ESR) dating of recent volcanics from Changbai Mountains. Geological Review, 45(sup): 287–293 (in Chinese)

    Google Scholar 

  • Yin J, Jull A J T, Burr G S, Zheng Y (2012). Awiggle-match age for the Millennium eruption of Tianchi volcano at Changbaishan, Northeastern China. Quat Sci Rev, 47: 150–159

    Article  Google Scholar 

  • Yin J, Zheng Y, Liu Y (2005). The radiocarbon age of carbinized wood in Tianchi volcano, Changbaishan mountains and its implication. Seismology and Geology, 27(1): 83–88 (in Chinese)

    Google Scholar 

  • Yu H, Xu J, Luan P, Zhao B and Pan B (2013). Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China. Natural Hazards, doi: 10.1007/s11069-013-0683-1

    Google Scholar 

  • Zhao D (1981). Preliminary investigation on relation between volcanic eruption of Changbai Mountain and the succession of its vegetation. Research of Forest Ecosystem, 2: 81–87 (in Chinese)

    Google Scholar 

  • Zhao H, Liu J (2012). Cryptotephra discovered in Gushantun peat of NE China and its significance. Seismology and Geology, 34(3): 516–530 (in Chinese)

    Google Scholar 

  • Zielinski G A (1995). Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. J Geophys Res, D, Atmospheres, 100(D10): 20937–20955

    Article  Google Scholar 

  • Zielinski G A, Mayewski P A, Meeker L D, Whitlow S, Twickler M S, Morrison M, Meese D A, Gow A J, Alley R B (1994). Record of volcanism since 7000 B.C. from the GISP2 Greenland Ice Core and implications for the volcano-climate system. Science, 264(5161): 948–952

    Article  Google Scholar 

  • Zou H, Fan Q, Zhang H (2010). Rapid development of the great Millennium eruption of Changbaishan (Tianchi) volcano, China/North Korea: evidence from U-Th zircon dating. Lithos, 119(3–4): 289–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao You or Jiaqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., You, H., Liu, J. et al. Distribution, geochemistry and age of the Millennium eruptives of Changbaishan volcano, Northeast China — A review. Front. Earth Sci. 8, 216–230 (2014). https://doi.org/10.1007/s11707-014-0419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-014-0419-x

Keywords

Navigation