Advertisement

Frontiers of Earth Science

, Volume 7, Issue 3, pp 271–281 | Cite as

Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico

  • Zhibin SunEmail author
  • Lie-Yauw Oey
  • Yi-Hui Zhou
Research Article
  • 113 Downloads

Abstract

A new data assimilation algorithm (Quasi-EnKF) in ocean modeling, based on the Ensemble Kalman Filter scheme, is proposed in this paper. This algorithm assimilates not only surface measurements (sea surface height), but also deep (∼2000 m) temperature observations from the Gulf of Mexico into regional ocean models. With the use of the Princeton Ocean Model (POM), integrated for approximately two years by assimilating both surface and deep observations, this new algorithm was compared to an existing assimilation algorithm (Mellor-Ezer Scheme) at different resolutions. The results show that, by comparing the observations, the new algorithm outperforms the existing one.

Keywords

data assimilation deep observation Gulf of Mexico 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berntsen J, Oey L Y (2010). Estimation of the internal pressure gradient in σ-coordinate ocean models: Comparison of second-, fourth-, and sixth-order schemes. Ocean Dyn, 60(2): 317–330CrossRefGoogle Scholar
  2. Chassignet E P, Hurlburt H E, Smedstad O M, Barron C N, Ko D S, Rhodes R C, Shriver J F., Wallcraft A J, Arnone R A (2005). Assessment of data assimilative ocean models in the Gulf of Mexico using ocean color. Geophysical Monograph—American Geophysical Union, 161: 87Google Scholar
  3. Cooper M, Haines K (1996). Altimetric assimilation with water property conservation. J Geophys Res, 101(C1): 1059–1077CrossRefGoogle Scholar
  4. Craig P D, Banner M L (1994). Modeling wave-enhanced turbulence in the ocean surface layer. J Phys Oceanogr, 24(12): 2546–2559CrossRefGoogle Scholar
  5. Donohue K, Hamilton P, Leaman K, Leben R, Prater M, Watts D R, Waddell E (2006). Exploratory Study of Deepwater Currents in the Gulf of Mexico, Vol. I and II. US Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. OCS Study MMS, 2006-073Google Scholar
  6. Evensen G (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn, 53(4): 343–367CrossRefGoogle Scholar
  7. Ezer T, Arango H, Hermann A (2003). Terrain-Following Ocean Models Users Workshop, Seattle, WA, Aug. 4–6, AOS Program, Princeton University, 19Google Scholar
  8. Ezer T, Mellor G L (1994). Continuous assimilation of Geosat altimeter data into a three-dimensional primitive equation Gulf Stream model. J Phys Oceanogr, 24(4): 832–847CrossRefGoogle Scholar
  9. Gaspari G, Cohn S E (1999). Construction of correlation function in two and three dimensions. Q J R Meteorol Soc, 125(554): 723–757CrossRefGoogle Scholar
  10. Kalnay E (2003). Atmospheric Modeling, Data Assimilation and Predictability. New York: Cambridge University Press, 341Google Scholar
  11. Kantha L, Choi J K, Schaudt K J, Cooper C K (2005). A Regional Data-Assimilative Model for Operational Use in the Gulf of Mexico. Geophysical Monograph—American Geophysical Union, 161, 165Google Scholar
  12. Lin X H, Oey L Y, Wang D P (2007). Altimetry and drifter data assimilations of Loop Current and eddies. J Geophys Res, 112(C5): C05046CrossRefGoogle Scholar
  13. MacKinnon J A, Gregg M C (2003). Shear and baroclinic energy flux on the summer New England Shelf. J Phys Oceanogr, 33(7): 1462–1475CrossRefGoogle Scholar
  14. Mellor G L (2001). One-dimensional ocean surface layer modeling, a problem and a solution. J Phys Oceanogr, 31(3): 790–809CrossRefGoogle Scholar
  15. Mellor G L (2004). User’s Guide for a Three-dimensional, Primitive Equation, Numerical Ocean Model. Program in Atmospheric and Oceanic Sciences, Princeton University, 42Google Scholar
  16. Mellor G L, Ezer T (1991). A Gulf Stream model and an altimetry assimilation scheme. J Geophys Res, 96(C5): 8779–8795CrossRefGoogle Scholar
  17. Mellor G L, Yamada T (1982). Development of a turbulence closure model for geophysical fluid problems. Rev Geophys, 20(4): 851–875CrossRefGoogle Scholar
  18. Oey L Y (1995). Eddy- and wind-forced shelf circulation. J Geophys Res, 100(C5): 8621–8637CrossRefGoogle Scholar
  19. Oey L Y (1996a). Flow around a coastal bend: a model of the Santa Barbara Channel eddy. J Geophys Res, 101(C7): 16667–16682CrossRefGoogle Scholar
  20. Oey L Y (1996b). Simulation of mesoscale variability in the Gulf of Mexico: sensitivity studies, comparison with observations, and trapped wave propagation. J Phys Oceanogr, 26(2): 145–175CrossRefGoogle Scholar
  21. Oey L Y, Chen P (1992a). A model simulation of circulation in the Northeast Atlantic shelves and seas. J Geophys Res, 97(C12): 20087–20115CrossRefGoogle Scholar
  22. Oey L Y, Chen P (1992b). A nested-grid ocean model: with application to the simulation of meanders and eddies in the Norwegian Coastal Current. J Geophys Res, 97(C12): 20063–20086CrossRefGoogle Scholar
  23. Oey L Y, Lee H C, Schmitz W J (2003). Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: a numerical model study. Journal of Geophysical Research: Oceans (1978–2012), 108(C10)Google Scholar
  24. Oey L, Ezer T, Lee H (2005). Loop Current, rings and related circulation in the Gulf of Mexico: a review of numerical models and future challenges. Geophysical Monograph—American Geophysical Union, 161, 31Google Scholar
  25. Sturges W, Lugo-Fernandez A (2005). Circulation in the Gulf of Mexico: Observations and Models, Geophys. Monogr. Ser., Vol. 161. Washington, D C: AGU, 347CrossRefGoogle Scholar
  26. Wang D P, Oey L Y, Ezer T, Hamilton P (2003). Near-surface currents in DeSoto Canyon (1997–99): comparison of current meters, satellite observation and model simulation. J Phys Oceanogr, 33(1): 313–326CrossRefGoogle Scholar
  27. Yin X Q, Oey L Y (2007). Bred-ensemble ocean forecast of Loop Current and rings. Ocean Model, 17(4): 300–326CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Universities Space Research AssociationColumbiaUSA
  2. 2.Sayre Hall, Forrestal CampusPrinceton University, AOSPrincetonUSA
  3. 3.Department of BiostatisticsUniversity of North CarolinaChapel HillUSA

Personalised recommendations