Frontiers of Earth Science in China

, Volume 4, Issue 2, pp 127–147 | Cite as

Mineral-microbe interactions: a review

Feature Article

Abstract

The studies of mineral-microbe interactions lie at the heart of the emerging field of Geomicrobiology, as minerals and rocks are the most fundamental earth materials with which microbes interact at all scales. Microbes have been found in a number of the Earth’s extreme environments and beyond. In spite of the diverse geological environments in which microbes are found and diverse approaches taken to study them, a common thread, mineral-microbe interactions, connects all these environments and experimental approaches under the same umbrella, i.e., Geomicrobiology. Minerals and rocks provide microbes with nutrients and living habitats, and microbes impact rock and mineral weathering and diagenesis rates through their effects on mineral solubility and speciation. Given a rapid growth of research in this area in the last two decades, it is not possible to provide a comprehensive review on the topic. This review paper focuses on three area, i.e., microbial dissolution of minerals, microbial formation of minerals, and certain techniques to study mineral-microbe interactions. Under the first area, three subjects are reviewed; they include siderophores as important agents in promoting mineral dissolution, microbial oxidation of reduced minerals (acid mine drainage and microbial leaching of ores), and microbial reduction of oxidized minerals. Under the second topic, both biologically controlled and induced mineralizations are reviewed with a special focus on microbially induced mineralization (microbial surface mediated mineral precipitation and microbial precipitation of carbonates). Under the topic of characterization, the focus is on transmission electron microscopy (TEM) and electron energy loss spectroscopy. It is the author’s hope that this review will promote more focused research on mineral-microbe interactions and encourage more collaboration between microbiologists and mineralogists.

Keywords

interaction microbe mineral oxidation reduction siderophores transmission electron microscopy (TEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloisi G, Pierre C, Rouchy J M, Foucher J P, Woodside J, the MEDINAUT Scientific Party (2000). Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett, 184 (1): 321–338CrossRefGoogle Scholar
  2. Amonette J E, Templeton J C (1998). Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline. Clays Clay Miner, 46 (1): 51–62CrossRefGoogle Scholar
  3. Ams D A, Maurice P A, Hersman L E, Forsythe J H (2002). Siderophore production by an aerobic Pseudomonas mendocina bacterium in the presence of kaolinite. Chem Geol, 188 (3–4): 161–170CrossRefGoogle Scholar
  4. Arnold R G, DiChristina T J, Hoffmann M R (1988). Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol Bioeng, 32 (9): 1081–1096CrossRefGoogle Scholar
  5. Bach W, Edwards K J (2003). Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta, 67 (20): 3871–3887CrossRefGoogle Scholar
  6. Baeuerlein E (2000). Biomineralization: From Biology to Biotechnology and Medical Application. New York: Wiley-VCH, 294Google Scholar
  7. Baker B J, Banfield J F (2003). Microbial communities in acid mine drainage. FEMS Microbiol Ecol, 44 (2): 139–152CrossRefGoogle Scholar
  8. Baker P A, Burns S J (1985). The occurrence and formation of dolomite in organic-rich continental margin sediments. AAPG Bull, 69: 1917–1930Google Scholar
  9. Baker P A, Kastner M (1981). Constraints on the formation of sedimentary dolomite. Science, 213 (4504): 214–216CrossRefGoogle Scholar
  10. Banerjee N R, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006). Preservation of ~3.4-3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett, 241 (3–4): 707–722CrossRefGoogle Scholar
  11. Banfield J F, Barker W W, Welch S A, Taunton A (1999). Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA, 96 (7): 3404–3411CrossRefGoogle Scholar
  12. Banfield J F, Cervini-Silva J, Nealson K M (2005). Molecular Geomicrobiology. The Mineralogical Society of America, Chantilly VA, 294Google Scholar
  13. Banfield J F, Nealson K H (1997). Geomicrobiology: Interaction Between Microbes and Minerals. Mineralogical Society of America, Atla UtahGoogle Scholar
  14. Barker W W, Welch S A, Banfield J F (1997). Biogeochemical weathering of silicate minerals. In: Banfield J F, Nealson K M, eds. Geomicrobiology: Interaction Between Microbes and Minerals. Mineralogical Society of America, Washington D C, 35: 391–428Google Scholar
  15. Barker W W, Welch S A, Chu S, Banfield J F (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineral, 83: 1551–1563Google Scholar
  16. Barton H A, Northup D E (2007). Geomicrobiology in cave environments: past, current and future perspectives. J Caves Karst Stud, 69 (1): 163–178Google Scholar
  17. Bazylinski D A, Frankel R B (2000). Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Lovley D R, ed. Environmental Microbe-Metal Interactions. Washington D C: ASM Press, 109–144Google Scholar
  18. Bazylinski D A, Frankel R B (2003). Biologically controlled mineralization in prokaryotes. In: Dove P M, DeYoreo J J, Weiner S, eds. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. Washington D C, 54: 217–247Google Scholar
  19. Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2 (3): 217–230CrossRefGoogle Scholar
  20. Beard B L, Johnson C M, Cox L, Sun H, Nealson K H, Aguilar C (1999). Iron isotope biosignatures. Science, 285 (5435): 1889–1892CrossRefGoogle Scholar
  21. Bennett P C, Rogers J R, Choi W J, Hiebert F K (2001). Silicates, silicate weathering, and microbial ecology. Geomicrobiological Journal, 18 (1): 3–19CrossRefGoogle Scholar
  22. Benzerara K, Menguy N (2009). Looking for traces of life in minerals. C R Geosci, 8 (7): 617–628Google Scholar
  23. Beveridge T J (2006). Cryotransmission electron microscopy is enabling investigators to examine native, hydrated structures in bacteria and biofilms. Microbe, 1: 279–284Google Scholar
  24. Beveridge T J, Meloche J D, Fyfe W S, Murray R G E (1983). Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides, and organic condensates in artificial sediments. Appl Environ Microbiol, 45 (3): 1094–1108Google Scholar
  25. Beveridge T J, Murray R G E (1976). Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol, 127 (3): 1502–1518Google Scholar
  26. Beveridge T J, Murray R G E (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol, 141 (2): 876–887Google Scholar
  27. Bigham J M, Nordstrom D K (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers C N, Jambor J L, Nordstrom D K, eds. Sulfate Minerals, Crystallography, Geochemistry and Environmental Significance: Reviews in Mineralogy and Geochemistry. Mineralogical Society of America, Washington D C, 40: 351–403Google Scholar
  28. Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M (1996). Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta, 60 (12): 2111–2121.CrossRefGoogle Scholar
  29. Boone D R, Liu Y, Zhao Z J, Balkwill D L, Drake G R, Stevens T O, Aldrich H C (1995). Bacillus infernus sp. nov., an Fe(III)- and Mn (IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol, 45 (3): 441–448CrossRefGoogle Scholar
  30. Borrok D, Turner B F, Fein J B (2005). A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings. Am J Sci, 305 (6–8): 826–853CrossRefGoogle Scholar
  31. Buseck P R, Dunin-Borkowski R E, Devouard B, Frankel R B, McCartney M R, Midgley P A, Posfai M, Weyland M (2001). Magnetite morphology and life on MarsGoogle Scholar
  32. Campbell K A, Farmer J D, Des Marais D (2002). Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids, 2 (2): 63–94CrossRefGoogle Scholar
  33. Canales C, Acevedo F, Gentina J C (2002). Laboratory-scale continuous bio-oxidation of a gold concentrate of high pyrite and enargite content. Process Biochem, 37 (10): 1051–1055CrossRefGoogle Scholar
  34. Cavagna S, Clari P, Martire L (1999). The role of bacteria in the formation of cold seep carbonates: geological evidnece from Monferrato (Tertiary, NWItaly). Sediment Geol, 126 (1–4): 253–270CrossRefGoogle Scholar
  35. Chapelle F H, O’Neill K, Bradley PM, Methé B A, Ciufo S A, Knobel L L, Lovley D R (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 415 (6869): 312–315CrossRefGoogle Scholar
  36. Childers S E, Ciufo S, Lovley D R (2002). Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature, 416 (6882): 767–769CrossRefGoogle Scholar
  37. Clark M E, Batty J D, van Buuren C B, Dew D W, Eamon M A (2006). Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy, 83 (1–4): 3–9CrossRefGoogle Scholar
  38. Costa K C, Navarro J B, Shock E L, Zhang C L, Soukup D, Hedlund B P (2009). Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles, 13 (3): 447–459CrossRefGoogle Scholar
  39. Cravotta C A I, Trahan M K (1999). Limestone drains to increase pH and remove dissolved metals from acidic mine drainage. Appl Geochem, 14: 2922–2923Google Scholar
  40. Daughney C J, Fowle D A, Fortin D E (2001). The effect of growth phase on proton and metal adsorption by Bacillus subtilis. Geochim Cosmochim Acta, 65 (7): 1025–1035CrossRefGoogle Scholar
  41. Daulton T L, Little B J, Lowe K, Jones-Meehan J (2002). Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J Microbiol Methods, 50 (1): 39–54CrossRefGoogle Scholar
  42. Desroches S, Biron F, Berthon G (1999). Aluminum speciation studies in biological fluids Part 5. A quantitative investigation of Al(III) complex equilibria with desferrioxamine, 2,3-dihydroxybenzoic acid, Tiron, CP20 (L1), and CP94 under physiological conditions, and computer-aided assessm. Journal of Inorganic Chemistry, 75 (1): 27–35Google Scholar
  43. Dhugues P, Joulian C, Spolaore P, Michel C, Garrido F, Morin D (2008). Continuous bioleaching of a pyrite concentrate in stirred reactors: population dynamics and exopolysaccharide production vs. bioleaching performance. Hydrometallurgy, 94 (1–4): 34–41CrossRefGoogle Scholar
  44. Dohnalkova A C, Gorby YA, McLean J, Fredrickson J K, Kennedy DW (2001). Biogenic mineral formation by iron reducing bacteria. Microsc Microanal, 7 (Suppl 2): 756–757Google Scholar
  45. Dong H L, Fredrickson J K, Kennedy D W, Zachara J M, Kukkadapu R K, Onstott T C (2000). Mineral transformation associated with the microbial reduction of magnetite. Chem Geol, 169 (3–4): 299–318CrossRefGoogle Scholar
  46. Dong H L, Jaisi D P, Kim J W, Zhang G (2009). Microbe-clay mineral interactions. Am Mineral, 94 (11–12): 1505–1519CrossRefGoogle Scholar
  47. Dong H L, Kostka J E, Kim J W (2003). Microscopic evidence for microbial dissolution of smectite. Clays Clay Miner, 51 (5): 502–512CrossRefGoogle Scholar
  48. Dong H L, Yu B (2007). Geomicrobiological processes in extreme environments: a review. Episodes, 30 (3): 202–216Google Scholar
  49. Dove P M, De Yoreo J J, Weiner S (2003) Biomineralization. Mineralogical Society of America, Washington D C, 381Google Scholar
  50. Druschel G K, Baker B J, Gihring T M, Banfield J F (2004). Acid mine drainage biogeochemistry at Iron Mountain, California. Geochem Trans, 5 (2): 13–32CrossRefGoogle Scholar
  51. Duckworth O W, Bargar J R, Jarzecki A A, Oyerinde O, Spiro T G, Sposito G (2009a). The exceptionally stable cobalt(III) -desferrioxamine B complex. Mar Chem, 113 (1–2): 114–122CrossRefGoogle Scholar
  52. Duckworth O W, Bargar J R, Sposito G (2009b). Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Biometals, 22 (4): 605–613CrossRefGoogle Scholar
  53. Duckworth O W, Sposito G (2005). Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol, 39 (16): 6037–6044CrossRefGoogle Scholar
  54. Duckworth O W, Sposito G (2007). Siderophore-promoted dissolution of synthetic and biogenic layer-type Mn oxides. Chem Geol, 242 (3–4): 497–508CrossRefGoogle Scholar
  55. Edwards H G M, Villar S E J, Parnell J, Cockell C S, Lee P (2005). Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst, 130 (6): 917–923CrossRefGoogle Scholar
  56. Edwards K, Bach W, McCollom T, Rogers D (2004). Neutrophilic ironoxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J, 21 (6): 393–404CrossRefGoogle Scholar
  57. Edwards K J, Bazylinski D A (2008). Intracellular minerals and metal deposits in prokaryotes. Geobiology, 6 (3): 309–317CrossRefGoogle Scholar
  58. Edwards K J, Bond P L, Druschel G K, McGuire M M, Hamers R J, Banfield J F (2000a). Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem Geol, 169 (3–4): 383–397CrossRefGoogle Scholar
  59. Edwards K J, Bond P L, Gihring T M, Banfield J F (2000b). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287 (5459): 1796–1799CrossRefGoogle Scholar
  60. Ehrlich H L, Newman D K (2009) Geomicrobiology. Boca Raton F L: CRC Press, 606Google Scholar
  61. Espana J S, Pamo E L, Pastor E S, Andres J R, Rubi J A M (2006). The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid minewaters, Iberian Pyrite Belt. Appl Geochem, 12 (3): 269–298Google Scholar
  62. Fein J B, Daughney C J, Yee N, Davis T A (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta, 61 (16): 3319–3328CrossRefGoogle Scholar
  63. Ferris F G, Beveridge T J, Fyfe W S (1986). Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320 (6063): 609–611CrossRefGoogle Scholar
  64. Ferris F G, Fyfe W S, Beveridge T J (1987). Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol, 63 (3–4): 225–232CrossRefGoogle Scholar
  65. Fisk M R, Giovannoni S J, Thorseth I H (1998). Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science, 281 (5379): 978–980CrossRefGoogle Scholar
  66. Fisk M R, Popa R, Mason O U, Storrie-Lombardi M C, Vicenzi E P (2006). Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology, 6 (1): 48–68CrossRefGoogle Scholar
  67. Fisk M R, Storrie-Lombardi M C, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003). Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosyst, 4 (12): 1103CrossRefGoogle Scholar
  68. Formolo M J, Lyons T W, Zhang C L, Kelley C, Sassen R, Horita J, Cole D R (2004). Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol, 205 (3–4): 253–264CrossRefGoogle Scholar
  69. Fortin D, Langley S (2005). Formation and occurrence of biogenic iron-rich minerals. Earth Sci Rev, 72 (1–2): 1–19CrossRefGoogle Scholar
  70. Fredrickson J K, Balkwill D L (2006). Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J, 23 (6): 345–356CrossRefGoogle Scholar
  71. Fredrickson J K, McKinley J P, Bjornstad B N, Long P E, Ringelberg D B, White D C, Krumholz L R, Suflita JM, Colwell F S, Lehman RM, Phelps T J, Onstott T C (1997). Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, Northwestern New Mexico. Geomicrobiol J, 14 (3): 183–202CrossRefGoogle Scholar
  72. Fredrickson J K, Onstott T C (1996). Microbes deep inside the earth. Sci Am, 275 (4): 68–73CrossRefGoogle Scholar
  73. Fredrickson J K, Zachara J M, Kennedy D W, Dong H, Onstott T C, Hinman N W, Li S M (1998). Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta, 62 (19–20): 3239–3257CrossRefGoogle Scholar
  74. Friedmann E I, Wierzchos J, Ascaso C, Winklhofer M (2001). Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc Natl Acad Sci USA, 98 (5): 2176–2181CrossRefGoogle Scholar
  75. Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003). A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem, 18 (8): 1267–1278CrossRefGoogle Scholar
  76. Furnes H, Banerjee N R, Muehlenbachs K, Kontinen A (2005). Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex, Finland. Precambrian Research, 136 (2): 125–137CrossRefGoogle Scholar
  77. Furnes H, Banerjee N R, Muehlenbachs K, Staudigel H, de Wit M (2004). Early life recorded in archean pillow lavas. Science, 304 (5670): 578–581CrossRefGoogle Scholar
  78. Furnes H, Muehlenbachs K, Torsvik T, Thorseth I H, Tumyr O (2001). Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chemical Geology, 173 (4): 313–330CrossRefGoogle Scholar
  79. Furnes H, Staudigel H (1999). Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett, 166 (3–4): 97–103CrossRefGoogle Scholar
  80. Geesey G G, Borch T, Reardon C L (2008). Resolving biogeochemical phenomena at high spatial resolution through electron microscopy. Geobiology, 6 (3): 263–269CrossRefGoogle Scholar
  81. Ghauri M A, Okibe N, Johnson D B (2007). Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy, 85 (2–4): 72–80Google Scholar
  82. Glasauer S, Langley S, Beveridge T J (2001). Sorption of Fe (hydr) oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol, 67 (12): 5544–5550CrossRefGoogle Scholar
  83. Glasauer S, Langley S, Beveridge T J (2002). Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science, 295 (5552): 117–119CrossRefGoogle Scholar
  84. Glasauer S, Langley S, Beveridge T J (2004). Intracellular manganese granules formed by a subsurface bacterium. Environ Microbiol, 6 (10): 1042–1048CrossRefGoogle Scholar
  85. Glasauer S, Langley S, Boyanov M I, Lai B, Kemner K, Beveridge T J (2007). Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration. Appl Environ Microbiol, 73 (3): 993–996CrossRefGoogle Scholar
  86. Golden D C, Ming DW, Morris R V, Brearley A, Lauer H V, Treiman A H, Zolensky M E, Schwandt C S, Lofgren G E, McKay G A (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral, 89: 681–695Google Scholar
  87. Golden D C, Ming DW, Schwandt C S, Lauer H V, Socki R A, Morris R V, Lofgren G E, McKay G A (2001). A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteroite ALH84001. Am Mineral, 86 (3): 370–375Google Scholar
  88. Golla U, Putnis A (2001). Valence state mapping and quantitative electron spectroscopic imaging of exsolution in titanohematite by energy-filtered TEM. Phys Chem Miner, 28 (2): 119–129CrossRefGoogle Scholar
  89. Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, Dohnalkova A, Beveridge T J, Chang I S, Kim B H, Kim K S, Culley D E, Reed S B, Romine M F, Saffarini D A, Hill E A, Shi L, Elias D A, Kennedy D W, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson K H, Fredrickson J K (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA, 103 (30): 11358–11363CrossRefGoogle Scholar
  90. GranthamMC, Dove PM, Dichristina T J (1997). Microbially catalyzed dissolution of iron and aluminum oxyhydroxide mineral surface coatings. Geochim Cosmochim Acta, 61 (21): 4467–4477CrossRefGoogle Scholar
  91. Greinert J, Bohrmann G, Suess E (2001) Gas hydrate associated carbonates and methane venting at Hydrate Ridge: classification, distribution, and origin of authigenic carbonates. In: Paull C K, DillonW P, eds. Natural Gas Hydrates: Occurrence, Distribution and Detection. Geophysical Monograph, American Geophysical Union. Washington D C, 124: 99–113Google Scholar
  92. Hao C B, Dong H L, Zhang H (2010). Succession of acidophilic bacterial community during biooxidation of refractory gold-containing sulfides. Geomicrobiol J (In press)Google Scholar
  93. Harrison J, Turner R J, Marques L, Ceri H (2005). A new understanding of these mcirobial communities is driving a revolution that may transform the science of microbiology. Am Sci, 93 (6): 508–515Google Scholar
  94. Herrmann AM, Ritz K, Nunan N, Clode P L, Pett-Ridge J, Kilburn M R, Murphy D V, O’Donnell A G, Stockdale E A (2007). Nano-scale secondary ion mass spectrometry-A new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem, 39 (8): 1835–1850CrossRefGoogle Scholar
  95. Hersman L E (2000) The role of siderophores in iron oxide dissolution. In: Lovley D R, ed. Environmental microbe-metal interactions. Washington D C: ASM Press, 145–157Google Scholar
  96. Hersman L E, Forsythe J H, Ticknor L O, Maurice P A (2001a). Growth of Pseudomonas mendocina on Fe(III) (hydr)oxides. Appl Environ Microbiol, 67 (10): 4448–4453CrossRefGoogle Scholar
  97. Hersman L E, Huang A, Maurice P A, Forsythe J H (2001b). Siderophore and reductant production by Pseudomonas mendocina in response to Fe deprivation. Geomicrobiological Journal, 18 (1): 1–13CrossRefGoogle Scholar
  98. Hochella MF Jr (2002). There’s plenty of room at the bottom: Nanoscience in geochemistry. Geochim Cosmochim Acta, 66 (5): 735–743CrossRefGoogle Scholar
  99. Hofstetter T B, Neumann A, Schwarzenbach R P (2006). Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environ Sci Technol, 40 (1): 235–242CrossRefGoogle Scholar
  100. Hofstetter T B, Schwarzenbach R P, Haderlein S B (2003). Reactivity of Fe(II) species associated with clay minerals. Environ Sci Technol, 37 (3): 519–528CrossRefGoogle Scholar
  101. Jaisi D P, Dong H, Morton J P (2008). Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: Reactivity in terms of Tc(VII) Reduction. Clays Clay Miner, 56 (2): 175–189CrossRefGoogle Scholar
  102. Jaisi D P, Dong H, Plymale A E, Fredrickson J K, Zachara J M, Heald S M, Liu C (2009). Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem Geol, 264 (1–4): 127–138CrossRefGoogle Scholar
  103. Johnson D B, Hallberg K B (2005). Acid mine drainage remediation options: a review. Sci Total Environ, 338 (1–2): 3–14Google Scholar
  104. Johnson D B, Hallberg K B (2009a) Carbon, iron, and sulfur metabolism in acidophilic microorganisms. In: Poole R K, ed. Advances in Microbial Physiology. Amsterdam: Academic Press, 54: 201–255Google Scholar
  105. Johnson D B, Hallberg K B (2009b) Carbon, iron, and sulfur metabolism in acidophilic microorganisms. In: Poole R K, ed. Advances in Microbial Physiology. Amsterdam: Academic Press, 201–255Google Scholar
  106. Johnson D B, McGinness S (1991). Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol, 57 (1): 207–211Google Scholar
  107. Jorgensen NO (1992). Methane-derived carbonate cementation of Holocene marine sediments from Kattegat, Denmark. Cont Shelf Res, 12 (10): 1209–1218CrossRefGoogle Scholar
  108. Kalinowski B E, Liermann L J, Brantley S L, Barnes A, Pantano C G (2000). X-ray photoelectron evidence for bacteriaenhanced dissolution of hornblende. Geochim Cosmochim Acta, 64 (8): 1331–1343CrossRefGoogle Scholar
  109. Kappler A, Straub K L (2005) Geomicrobiological cycling of iron. In: Banfield J F, Cervini-Silva J, Nealson K H, eds. Molecular Geomicrobiology. Chantilly VA: The Mineralogical Society of America, 59: 85–108Google Scholar
  110. Kashefi K, Holmes D E, Reysenbach A L, Lovley D R (2002). Use of Fe (III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol, 68 (4): 1735–1742CrossRefGoogle Scholar
  111. Kastner M, Elderfield H, Martin J B, Suess E, Kvenvolden K A, Garrison R E (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin-major constituents and strontium isotopes. In: Suess E, von Huene R E A, eds. Proceedings of Ocean Drilling Program, Scientific Results. Ocean Drilling Program. College Station TX, 112: 413–440Google Scholar
  112. Kenward P A, Goldstein R H, González L A, Roberts J A (2009). Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology, 7 (5): 556–565CrossRefGoogle Scholar
  113. Kim C, Lorenz W W, Hoopes J T, Dean J F D (2001). Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J Bacteriol, 183 (16): 4866–4875CrossRefGoogle Scholar
  114. Kim J W, Dong H, Seabaugh J, Newell S W, Eberl D D (2004). Role of microbes in the smectite-to-illite reaction. Science, 303 (5659): 830–832CrossRefGoogle Scholar
  115. Kim J W, Furukawa Y, Daulton T, Lavoie D, Newell S (2003). Characterization of microbially Fe(III)-reduced nontronite: environmental cell transmission electron microscopy study. Clays Clay Miner, 51 (4): 382–389CrossRefGoogle Scholar
  116. Kim J W, Peacor D R, Tessier D, Elsass F (1995). A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner, 43 (1): 51–57CrossRefGoogle Scholar
  117. Konhauser K (2007) Introduction to Geomicrobiology. Oxford: Blackwell PublishingGoogle Scholar
  118. Kostka J E, Wu J, Nealson K H, Stucki J W (1999). The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochim Cosmochim Acta, 63 (22): 3705–3713CrossRefGoogle Scholar
  119. Kraemer S (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci, 66 (1): 3–18CrossRefGoogle Scholar
  120. Kraemer S M, Butler A, Borer P, Cervini-Silva J (2005). Siderophores and the dissolution of iron-bearing minerals in marine systems. Rev Mineral Geochem, 59 (1): 53–84CrossRefGoogle Scholar
  121. Krauskopf K B, Bird D K (1995) Introduction to geochemistry. New York: McGraw-HillGoogle Scholar
  122. Krumholz L R, McKinley J P, Ulrich F A, Suflita J M (1997). Confined subsurface microbial communities in Cretaceous rock. Nature, 386 (6620): 64–66CrossRefGoogle Scholar
  123. Kukkadapu R K, Zachara J M, Fredrickson J K, Kennedy D W (2004). Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe (III)-reducing bacterium: Formation of carbonate green rust in the presence of phosphate. Geochim Cosmochim Acta, 68 (13): 2799–2814CrossRefGoogle Scholar
  124. Kukkadapu R K, Zachara J M, Smith S C, Fredrickson J K, Liu C X (2001). Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments. Geochim Cosmochim Acta, 65 (17): 2913–2924CrossRefGoogle Scholar
  125. Kulczycki E, Fowle D A, Knapp C, Graham D W, Roberts J A (2007). Methanobactin-promoted dissolution of Cu-substituted borosilicate glass. Geobiology, 5 (3): 251–263CrossRefGoogle Scholar
  126. Kulm L D, Suess E (1990). Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. J Geophys Res, 95 (B6): 8899–8915CrossRefGoogle Scholar
  127. Land L S (1998). Failure to precipitate dolomite at 25°C from dilute solutions despite 1000-fold oversaturation after 32 years. Aquat Geochem, 4 (3/4): 361–368CrossRefGoogle Scholar
  128. Lian B, Hu Q N, Chen J, Ji J F, Teng H H (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta, 70 (22): 5522–5535CrossRefGoogle Scholar
  129. Lian B, Wang B, Pan M, Liu C Q, Teng H H (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillusfumigatus. Geochim Cosmochim Acta, 72 (1): 87–98CrossRefGoogle Scholar
  130. Liermann L J, Guynn R L, Anbar A, Brantley S L (2005). Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol, 220 (3–4): 285–302CrossRefGoogle Scholar
  131. Liermann L J, Kalinowski B E, Brantley S L, Ferry J G (2000a). Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta, 64 (4): 587–602CrossRefGoogle Scholar
  132. Liermann L J, Kalinowski B E, Brantley S L, Ferry J G (2000b) Role of bacterial siderophores in dissolution of hornblendeGoogle Scholar
  133. Liu C, Zachara J M, Fredrickson J K, Kennedy D W, Dohnalkova A (2002). Modeling the inhibition of the bacteral reduction of U(VI) by beta-MnO2(s). Environ Sci Technol, 36 (7): 1452–1459CrossRefGoogle Scholar
  134. Lloyd J R (2002). Bioremediation of metals; the application of microorganisms that make and break minerals. Microbiology Today, 29: 67–69Google Scholar
  135. Lovley D R (2000) Environmental Microbe-Metal Interactions. Washington D C: ASM press, 408Google Scholar
  136. Lovley D R, Blunt-Harris E L (1999). Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol, 65 (9): 4252–4254Google Scholar
  137. Lovley D R, Coates J D, Bluent-Harris E L, Philips E J P, Woodward J C (1996). Humic substances as electron acceptors for microbial respiration. Nature, 382 (6590): 445–448CrossRefGoogle Scholar
  138. Lovley D R, Holmes D E, Nevin K P (2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol, 49: 219–286CrossRefGoogle Scholar
  139. Lower S K, Hochella M F Jr, Beveridge T J (2001). Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH. Science, 292 (5520): 1360–1363CrossRefGoogle Scholar
  140. Lüttge A, Conrad P G (2004). Bacterial control of calcite dissolution kinetics. Appl Environ Microbiol, 70: 1627–1637CrossRefGoogle Scholar
  141. Lüttge A, Zhang L, Nealson K H (2005). Mineral surfaces and their implications for microbial attachment: results from Monte Carlo simulations and direct surface observations. Am J Sci, 305 (6–8): 766–790CrossRefGoogle Scholar
  142. Mailloux B J, Alexandrova E, Keimowitz A R, Wovkulich K, Freyer G A, Herron M, Stolz J F, Kenna T C, Pichler T, Polizzotto M L, Dong H L, Bishop M, Knappett P S K (2009). Microbial mineral weathering for nutrient acquisition releases arsenic. Appl Environ Microbiol, 75 (8): 2558–2565CrossRefGoogle Scholar
  143. Marchand E A, Silverstein J (2003). The role of enhanced heterotrophic bacterial growth on iron oxidation by Acidithiobacillus ferrooxidans. Geomicrobiol J, 20 (3): 231–244CrossRefGoogle Scholar
  144. Marshall M, Beliaev J A S, Dohnalkova A C, Kennedy D W, Shi L, Wang Z, Boyanov M I, Lai B, Kemner K M, Mclean J S, Reed S B, Culley D E, Bailey V L, Simonson C J, Saffarini D A, Romine M F, Zachara J M, Fredrickson J K (2006). c-type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol, 4 (8): e268CrossRefGoogle Scholar
  145. Marsili E, Baron D B, Shikhare I D, Coursolle D J, Gralnick J A, Bond D R (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA, 105 (10): 3968–3973CrossRefGoogle Scholar
  146. Mauck B S, Roberts J A (2007). Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol J, 24 (3): 167–177CrossRefGoogle Scholar
  147. Maurice P A, Haack E A, Mishra B (2009). Siderophore sorption to clays. Biometals, 22 (4): 649–658CrossRefGoogle Scholar
  148. Maurice P A, Lee Y-J, Hersman L E (2000). Dissolution of Al-substituted goethites by an aerobic Pseudomonas mendocina var. bacteria. Geochim Cosmochim Acta, 64 (8): 1363–1374CrossRefGoogle Scholar
  149. Maurice P A, Vierkorn M A, Hersman L E, Fulghum J E, Ferryman A (2001). Enhancement of kaolinite dissolution by an aerobic Pseudomonas mendocina bacteria. Geomicrobiological Journal, 18 (1): 21–35CrossRefGoogle Scholar
  150. Mazzullo S J (2000). Organogenic Dolomitization in peritidal to deep-sea sediments. J Sediment Res, 70 (1): 10–23CrossRefGoogle Scholar
  151. McLean J, Beveridge T J (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol, 67 (3): 1076–1084CrossRefGoogle Scholar
  152. McLean J S, Beveridge T J, Phipps D (2000). Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol, 2 (6): 611–619CrossRefGoogle Scholar
  153. McLoughlin N, Brasier M D, Wacey D, Green O R, Perry R S (2007). On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology, 7 (1): 10–26CrossRefGoogle Scholar
  154. Meyer-Dombard D R, Shock E L, Amend J P (2005). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology, 3 (3): 211–227CrossRefGoogle Scholar
  155. Moore T S, Murray R W, Kurtz A C, Schrag D P (2004). Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett, 229 (1–2): 141–154CrossRefGoogle Scholar
  156. Morgan J J (2000). Manganese in natural waters and earth’s crust: its availability to organisms. Met Ions Biol Syst, 37: 1–34Google Scholar
  157. Neumann A, Hofstetter T B, Lüssi M, Cirpka O A, Petit S, Schwarzenbach R P (2008). Assessing the redox reactivity of structural iron in smectites using nitroaromatic compounds as kinetic probes. Environ Sci Technol, 42 (22): 8381–8387CrossRefGoogle Scholar
  158. Nevin K P, Lovley D R (2002). Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiological Journal, 19 (2): 141–159CrossRefGoogle Scholar
  159. Newman D K (2001). Microbiology. How bacteria respire minerals. Science, 292 (5520): 1312–1313CrossRefGoogle Scholar
  160. Newman D K (2008). From iron oxides to infections. Geobiology, 6 (3): 196–200CrossRefGoogle Scholar
  161. Nicormat D, Dick W A, Tuovinen O H (2006). Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. microbial. Ecology, 51: 83–89Google Scholar
  162. Nordstrom D K (2000). Advances in the hydrochemistry and microbiology of acid mine waters. Int Geol Rev, 42 (6): 499–515CrossRefGoogle Scholar
  163. Nordstrom D K, Alpers C N (1999). Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA, 96 (7): 3455–3462CrossRefGoogle Scholar
  164. Olson G J, Brierley J A, Brierley C L (2003). Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol, 63 (3): 249–257CrossRefGoogle Scholar
  165. Peckmann J, Gischler E, Oschmann W, Reitner J (2001). An early carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology, 29 (3): 271–274CrossRefGoogle Scholar
  166. Peckmann J, Thiel V (2004). Carbon cycling at ancient methane-seeps. Chem Geol, 205 (3–4): 443–467CrossRefGoogle Scholar
  167. Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999). Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; norther Itlay): microbially induced authigenic carbonates. Int J Earth Sci, 88 (1): 60–75CrossRefGoogle Scholar
  168. Pedersen K (1997). Microbial life in deep granitic rock. FEMS Microbiol Rev, 20 (3–4): 399–414CrossRefGoogle Scholar
  169. Pena J, Duckworth O W, Bargar J R, Sposito G (2007). Dissolution of hausmannite (Mn3O4) in the presence of the trihydroxamate siderophore desferrioxamine B. Geochim Cosmochim Acta, 71 (23): 5661–5671CrossRefGoogle Scholar
  170. Pennisi E (2002). Geobiologists: as diverse as the bugs they study. Science, 296 (5570): 1058–1060CrossRefGoogle Scholar
  171. Peretyazhko T, Zachara J M, Boily J F, Xia Y, Gassman P L, Arey B W, Burgos W D (2009). Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol, 262 (3–4): 169–178CrossRefGoogle Scholar
  172. Pierre C, Rouchy J M (2004). Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: evidence of the past gas hydrate formation and dissociation. Chem Geol, 205 (3–4): 469–484CrossRefGoogle Scholar
  173. Pósfai M, Dunin-Borkowski R E (2006). Sulfides in biosystems. Rev Mineral Geochem, 61 (1): 679–714CrossRefGoogle Scholar
  174. Priscu J C, Christner B C (2004) Earth’s icy biosphere. In: Bull A T, ed. Microbial diversity and bioprospecting. Washington D C: ASM pressGoogle Scholar
  175. Regenspurg S, Peiffer S (2005). Arsenate and chromate incorporation in schwertmannite. Appl Geochem, 20 (6): 1226–1239CrossRefGoogle Scholar
  176. Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R (2005). Extracellular electron transfer via microbial nanowires. Nature, 435 (7045): 1098–1101CrossRefGoogle Scholar
  177. Reguera G, Nevin K P, Nicoll J S, Covalla S F, Woodard T L, Lovley D R (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol, 72 (11): 7345–7348CrossRefGoogle Scholar
  178. Reysenbach A L, Ehringer M, Hershberger K L (2000a). Microbial diversity at 83°C in calcite spring, Yellowstone Nationla Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremephiles, 4: 61–67Google Scholar
  179. Reysenbach A L, Longnecker K, Kirshtein J (2000b). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol, 66 (9): 3798–3806CrossRefGoogle Scholar
  180. Reysenbach A L, Shock E (2002). Merging genomes with geochemistry in hydrothermal ecosystems. Science, 296 (5570): 1077–1082CrossRefGoogle Scholar
  181. Rickard D, Morse J W (2005). Acid volatile sulfide (AVS). Mar Chem, 97 (3–4): 141–197CrossRefGoogle Scholar
  182. Roberts H H, Aharon P (1994). Hydrocarbon-derived carbonate buildups of the northern Gulf-of-Mexico continental slope- a review of submersible investigations. Geo-Mar Lett, 14 (2–3): 135–148CrossRefGoogle Scholar
  183. Roberts J A (2004). Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chem Geol, 212 (3–4): 313–327CrossRefGoogle Scholar
  184. Roberts J A, Bennett P C, Gonzalez L A, Macpherson G L, Milliken K L (2004). Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32 (4): 277–280CrossRefGoogle Scholar
  185. Roberts J A, Fowle D A, Hughes B T, Kulczycki E (2006). Attachment behavior of Shewanella putrefaciens onto magnetite under aerobic and anaerobic conditions. Geomicrobiol J, 23 (8): 631–640CrossRefGoogle Scholar
  186. Roden E E (2006). Geochemical and microbiological controls on dissimilatory iron reduction. C R Geosci, 338 (6–7): 456–467CrossRefGoogle Scholar
  187. Roden E E, Zachara J M (1996). Microbial reduction of crystalline Fe (III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol, 30 (5): 1618–1628CrossRefGoogle Scholar
  188. Rodriguez NM, Paull C K, Borowski W S (2000) Zonation of authigenic carbonates within gas-hydrate bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. In: Paull C K, Matsumoto R, Wallace P J, Dillon W P, eds. Proceedings of Ocean Drilling Program, Scientific Research, 164: 301–312Google Scholar
  189. Rogers J R, Bennett P C (2004). Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol, 203 (1–2): 91–108CrossRefGoogle Scholar
  190. Rosso K M, Zachara J M, Fredrickson J K, Gorby Y A, Smith S C (2003). Nonlocal bacterial electron transfer to hematite surfaces. Geochim Cosmochim Acta, 67 (5): 1081–1087CrossRefGoogle Scholar
  191. Sample J C, Reid M R (1998). Contrasting hydrogeologic regimes along strike-slip and thrust faults in the Oregon convergent margin: Evidence from the chemistry of syntectonic carbonate cements and veins. Geol Soc Am Bull, 110 (1): 48–59CrossRefGoogle Scholar
  192. Sánchez-Román M, McKenzie J A, Wagener A D R, Rivadeneyra M A, Vasconcelos C (2009). Presence of sulfate does not inhibit lowtemperature dolomite precipitation. Earth Planet Sci Lett, 285 (1–2): 131–139CrossRefGoogle Scholar
  193. Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie J A, Zenobi R, Rivadeneyra M A (2008). Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology, 36 (11): 879–882CrossRefGoogle Scholar
  194. Santelli C M, Welch S A, Westrich H R, Banfield J F (2001). The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution rates. Chem Geol, 180 (1–4): 99–115CrossRefGoogle Scholar
  195. Sassen R, Roberts H H, Carney R, Milkov A V, DeFreitas D A, Lanoil B, Zhang C L (2004). Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol, 205 (3–4): 195–217CrossRefGoogle Scholar
  196. Schwertmann U, Carlson L (2005). The pH-dependent transformation of schwertmannite to goethite at 25°C. Clay Miner, 40 (1): 63–66CrossRefGoogle Scholar
  197. Seabaugh J L, Palmieri M, Crawford P A, Dong H, Champine J E (2003) Interaction of lead and calcium with lead-resistant microorganisms from soil contaminated with Chat. The American Society for Microbiology 103nd General Meeting, Washington D CGoogle Scholar
  198. Senko J M, Wanjugi P, Lucas M, Bruns M A, Burgos W D (2008). Characterization of Fe(II) oxidizing bacterial activities and communities at two acidic Appalachian coalmine drainage-impacted sites. ISME J, 2 (11): 1134–1145CrossRefGoogle Scholar
  199. Senko J M, Zhang G X, McDonough J T, Bruns M A, Burgos W D (2009). Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol J, 26 (2): 71–82CrossRefGoogle Scholar
  200. Sharma R (2001). Design and applications of environmental cell transmission electron microscopy for in situ observations of gas-solid reactions. Microsc Microanal, 7 (6): 494–506Google Scholar
  201. Sharma R, Weiss K (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Tech, 42 (4): 270–280CrossRefGoogle Scholar
  202. Shelobolina E S, Pickering S M, Lovely D R (2005). Fe-Cycle bacteria from industrial clays mined in Georgia, USA. Clays Clay Miner, 53 (6): 580–587CrossRefGoogle Scholar
  203. Singer P C, Stumm W (1970). Acidic mine drainage: the rate-determining step. Science, 167 (3921): 1121–1123CrossRefGoogle Scholar
  204. Sokolov I, Smith D S, Henderson G S, Gorby Y A, Ferris F G (2001). Cell surface electrochemical heterogeneity of the Fe(III)-reducing bacteria Shewanella putrefaciens. Environ Sci Technol, 35 (2): 341–347CrossRefGoogle Scholar
  205. Sonnenfeld E M, Beveridge T J, Koch A L, Doyle R J (1985). Asymmetric distribution of charge on the cell wall of Bacillus subtilis. J Bacteriol, 163 (3): 1167–1171Google Scholar
  206. Stakes D S, Orange D, Paduan J B, Salamy K A, Maher N (1999). Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol, 159 (1–4): 93–109CrossRefGoogle Scholar
  207. Staudigel H, Chastain R A, Yayanos A, Bourcier W (1995). Biologically mediated dissolution of glass. Chem Geol, 126 (2): 147–154CrossRefGoogle Scholar
  208. Staudigel H, Furnes H, Banerjee N R, Dilek Y, Muehlenbachs K (2006). Microbes and volcanoes: a tale of the oceans, ophiolites, and greenstone belts. GSA Today, 16 (10): 4–10CrossRefGoogle Scholar
  209. Staudigel H, Yayanos A, Chastain R A, Davies G, Verdurmen E A, Schiffman P, Bourcier R, De Baar H (1998). Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett, 164 (1–2): 233–244CrossRefGoogle Scholar
  210. Stevens TO, McKinley JP (1995). Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science, 270 (5235): 450–455CrossRefGoogle Scholar
  211. Stookey L L (1970). Ferrozine-a new spectrophotometric reagent for iron. Anal Chem, 42 (7): 779–781CrossRefGoogle Scholar
  212. Storrie-Lombardi M C, Fisk M R (2004). Elemental abundance distributions in suboceanic basalt glass: evidence of biogenic alteration. Geochem Geophys Geosyst, 5 (10): Q10005CrossRefGoogle Scholar
  213. Stucki J W (1981). The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: II. A photochemical method. Soil Sci Soc Am J, 45: 638–641CrossRefGoogle Scholar
  214. Stucki J W (2006) Properties and behavior of iron in clay minerals. In: Bergaya F, Lagaly G, Theng B G K, eds. Handbook of Clay Science, Elsevier: Amsterdam, 423–476CrossRefGoogle Scholar
  215. Stucki J W, Anderson W L (1981). The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: I. SOurces of variability. Soil Sci Soc Am J, 45: 633–637Google Scholar
  216. Stucki J W, Kostka J E (2006). Microbial reduction of iron in smectite. C R Geosci, 338 (6–7): 468–475CrossRefGoogle Scholar
  217. Stucki J W, Tessier D (1991). Effects of iron oxidation state on the texture and structural order of Na-nontronite gels. Clays Clay Miner, 39 (2): 137–143CrossRefGoogle Scholar
  218. Templeton A, Knowles E (2009). Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annu Rev Earth Planet Sci, 37 (1): 367–391CrossRefGoogle Scholar
  219. Templeton A S, Staudigel H, Tebo B M (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount Geomicrobiology Journal, 22 (3–4), 127–139Google Scholar
  220. Terzi C, Lucchi F R, Vai G B, Aharon P (1994). Petrography and stable-isotope aspects of cold vent activity imprinted on Miocene age calcari-a-lucina from Tuscan and Romagna Apennines, Italy. Geo-Mar Lett, 14 (2–3): 177–184CrossRefGoogle Scholar
  221. Thomas-Keprta K L, Bazylinski D A, Kirschvink J L, Clemett S J, McKay D S, Wentworth S J, Vali H, Gibson E K Jr, Romanek C S (2000). Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta, 64 (23): 4049–4081CrossRefGoogle Scholar
  222. Thomas-Keprta K L, Clemett S J, Bazylinski D A, Kirschvink J L, McKay D S, Wentworth S J, Vali H, Gibson E K, Romanek C S (2002). Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol, 68 (8): 3663–3672CrossRefGoogle Scholar
  223. Thorseth I H, Furnes H, Tumyr O (1995a). Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol, 119 (1–4): 139–160CrossRefGoogle Scholar
  224. Thorseth I H, Pedersen R B, Christie D M (2003) Microbial alteration of 0–30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance Earth and Planetary Science Letters, 215 (1–2), 237–247Google Scholar
  225. Thorseth I H, Torsvik T, Furnes H, Muehlenbachs K (1995b). Microbes play an important role in the alteration of oceanic crust. Chem Geol, 126 (2): 137–146CrossRefGoogle Scholar
  226. Ubaldini S, Veglio F, Beolchini F, Toro L, Abbruzzese C (2000). Gold recovery from a refractory pyrrhotite ore by biooxidation. Int J Miner Process, 60 (3–4): 247–262CrossRefGoogle Scholar
  227. Ullman W J, Welch S A (2002) Organic ligands and feldspar dissolution. In: Hellman R, Wood S A, eds. Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar. The Geochemical Society, St. Louis, MO. 7: 3–35Google Scholar
  228. Uroz S, Calvaruso C, Turpault M P, Frey-Klett P (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol, 17 (8): 378–387CrossRefGoogle Scholar
  229. Vali H, Weiss B, Li Y L, Sears S K, Kim S S, Kirschvink J L, Zhang C L (2004). Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. Proc Natl Acad Sci USA, 101 (46): 16121–16126CrossRefGoogle Scholar
  230. van Aken P A, Liebscher B (2002). Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L-23 electron energy-loss near-edge spectra. Phys Chem Miner, 29 (3): 188–200CrossRefGoogle Scholar
  231. van Aken P A, Liebscher B, Styrsa V J (1998). Quantitative determination of iron oxidation states in minerals using Fe L-2,L-3-edge electron energy-loss near-edge structure spectroscopy. Phys Chem Miner, 25 (5): 323–327CrossRefGoogle Scholar
  232. van Aken P A, Styrsa V J, Liebscher B, Woodland A B, Redhammer G J (1999). Microanalysis of Fe3+/Sigma Fe in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe M-2,M-3 edge. Phys Chem Miner, 26 (7): 584–590CrossRefGoogle Scholar
  233. Vasconcelos C, McKenzie J A (1997). Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390Google Scholar
  234. Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J (1995). Microbial mediation as a possible mechanism for natural dolomite formation at low temperature. Nature, 377 (6546): 220–222CrossRefGoogle Scholar
  235. VonRad U, Rosch H, Berner U, Geyh M, Marchig V, Schulz H (1996). Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Mar Geol, 136 (1–2): 55–77CrossRefGoogle Scholar
  236. Wacey D, Wright D T, Boyce A J (2007). A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chem Geol, 244 (1–2): 155–174CrossRefGoogle Scholar
  237. Wall J D, Krumholz L R (2006). Uranium reduction. Annu Rev Microbiol, 60 (1): 149–166CrossRefGoogle Scholar
  238. Wang H M, Zeng C P, Liu Q Y, Liu D, Qiu X, Gong L F (2010a). Calcium Carbonate Precipitation Induced by a Bacterium Strain Isolated from an Oligotrophic Cave in Central China. Front Earth Sci China (In press)Google Scholar
  239. Wang X, Li Y, Lu A H, Wang C Q (2010b). Features of precipitates formed by different cultivations of Acidithiobacillus ferrooxidans. Front Earth Sci China (In press)Google Scholar
  240. Warthmann R, van Lith Y, Vasconcelos C, McKenzie J A, Karpoff A M (2000). Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28 (12): 1091–1094CrossRefGoogle Scholar
  241. Warthmann R, Vasconcelos C, Sass H, McKenzie J A (2005). Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfatereducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremephiles, 9 (3): 255–261CrossRefGoogle Scholar
  242. Welch S A, Barker W W, Banfield J F (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta, 63 (9): 1405–1419CrossRefGoogle Scholar
  243. Welch S A, Ullman W J (1993). The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim Cosmochim Acta, 57 (12): 2725–2736CrossRefGoogle Scholar
  244. Wright D (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol, 126 (1–4): 147–157CrossRefGoogle Scholar
  245. Wright D T (1997). An organogenic origin for widespread dolomite in the Cambrian Eilean Dubh Formation, Northwestern Scotland. J Sediment Res, 67: 54–64Google Scholar
  246. Wright D T, Oren A (2005). Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J, 22 (1–2): 27–53CrossRefGoogle Scholar
  247. Wright D T, Wacey D (2005). Precipitation of dolomite using sulphatereducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52 (5): 987–1008CrossRefGoogle Scholar
  248. Wu L L, Jacobson A D, Chen H C, Hausner M (2007). Characterization of elemental release during microbe-basalt interactions at T = 28°C. Geochim Cosmochim Acta, 71 (9): 2224–2239CrossRefGoogle Scholar
  249. Wu L L, Jacobson A D, Hausner M (2008). Characterization of elemental release during microbe-granite interactions at T = 28°C. Geochim Cosmochim Acta, 72 (4): 1076–1095CrossRefGoogle Scholar
  250. Xu H F, Wang Y F (1999). Electron energy-loss spectroscopy (EELS) study of oxidation states of Ce and U in pyrochlore and uraninitenatural analogues for Pu- and U-bearing waste forms. J Nucl Mater, 265 (1–2): 117–123CrossRefGoogle Scholar
  251. Younger P L (1997). The longevity of minewater pollution: a basis for decision-making. Sci Total Environ, 194–195: 457–466Google Scholar
  252. Zhang G, Dong H, Jiang H, Kukkadapu R K, Kim J W, Eberl D, Xu Z (2009a). Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. Am Mineral, 94 (7): 1049–1058CrossRefGoogle Scholar
  253. Zhang G X, Senko J M, Kelly S D, Tan H, Kemner K M, Burgos W D (2009b). Microbial reduction of iron(III)-rich nontronite and uranium (VI). Geochim Cosmochim Acta, 73 (12): 3523–3538CrossRefGoogle Scholar
  254. Zhou Y F, Wang R C, Lu X C, Chen T H (2010). Role of Adhered Paenibacillus polymyxa in the Dissolution and Flotation of Bauxite: A Dialytic Investigation. Front Earth Sci China (In press)Google Scholar
  255. Zierenberg RA, Adams M W W, Arp A J (2000). Life in extreme environments: hydrothermal vents. Proc Natl Acad Sci USA, 97 (24): 12961–12962CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Key Laboratory of Biogeology and Environmental Geology of Ministry of EducationChina University of GeosciencesWuhanChina
  2. 2.Geomicrobiology Laboratory, State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  3. 3.Department of GeologyMiami UniversityOxfordUSA

Personalised recommendations