Skip to main content
Log in

Petrochemistry of peridotites from North China: Significance for lithospheric mantle evolution

  • Research Article
  • Published:
Frontiers of Earth Science in China Aims and scope Submit manuscript

Abstract

A petrochemical analysis was undertaken of peridotitic xenoliths in volcanic rocks that erupted from the Paleozoic to the Cenozoic within the eastern part of the North China craton, and the peridotites as tectonic intrusion in the Early Mesozoic from the Sulu orogen. The results show that the cratonic mantle, which was refractory and existed when the kimberlites intruded in the Paleozoic, had almost been replaced by the newly accreted fertile lithospheric mantle during the Mesozoic-Cenozoic. The erosion, metasomatism, and intermingling caused by the accreted asthenospheric material acting on the craton mantle along the weak zone and deep fault (such as the Tanlu fault) in the existing lithosphere resulted in the lithospheric thinning at a larger scale 100 Ma ago (but later than 178 Ma). The largest thinning would be in the Eogene. The upwelling asthenospheric material transformed into accreted lithospheric mantle due to the asthenospheric temperature falling in the Neogene (leading to relatively slight lithospheric incrassation), and finally accomplished mantle replacement. The peridotitic body in the Sulu orogen represents the products spreading from the modified cratonic lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd F R (1996). Origin of peridotite xenoliths: major element consideration. In: Ranalli G, Ricci L F, Ricci C A, et al, eds. High pressure and high temperature research on lithosphere and mantle materials. Siena: University of Siena, 89–106

    Google Scholar 

  • Boyd F R, Mertman S A (1987). Composition and structure of the Kaapvaal lithosphere, southern Africa. In: Mysen B O, ed. Magmatic processes: physicochemical principles. London: The Geochemical Society, Spe Pub, 1: 13–24

    Google Scholar 

  • Boyd F R, Pokhilenko N P, Pearson D G, et al (1997). Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol, 128: 228–246

    Article  Google Scholar 

  • Chi J S (1989). The Study of Cenozoic Basalts and Upper Mantle Beneath China (attachment: kimberlites), Wuhan: China University of Geosciences Press (in Chinese)

    Google Scholar 

  • Cox K G, Smith M R, Beswetherick S (1987). Textural Studies of garnet lherzolites: Evidence of exsolution origin from high-temperature harzburgites. In: Nixon P H, ed. Mantle xenoliths. John Wiley: New York, 537–550

    Google Scholar 

  • Deng J F, Zhao H L, Mo X X, et al (1996). Continental Roots-plume Tectonics of China: the Key of Continental Kinetic. Beijing: Geological Publishing House (in Chinese)

    Google Scholar 

  • Fan W M., Zhang H F, Baker J, et al (2001). On and off the North China craton: where is the Archean keel? J Petrol, 41: 933–950

    Article  Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, et al (2002). Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, et al (2004). Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Griffin W L, O’Reilly S Y, Ryan C G (1992). Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies. Interna Sympos Cenozoic volcanic rocks and deep-seated xenoliths of China and its environs. Beijing, 20

  • Griffin W L, O’Reilly S Y, Ryan C G (1999). The Composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berka C M, Mysen B O, eds. Mantle petrology: field observations and high-pressure experimentation: a tribute to Francis R (Joe) Boyd. London: The Geochemical Society Special Publication, 6: 13–45

    Google Scholar 

  • Griffin W L, Zhang A, O’Reilly S Y, et al (1998). Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M., Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Washington, DC: Amer Geodynamics Series, 27: 107–126

    Google Scholar 

  • Jin L Y (1985). Xenoliths in Cenozoic basalts from Tanlu fault. The Journal of Changchun College of Geology, 3: 21–32 (in Chinese with English abstract)

    Google Scholar 

  • Li S G, Xiao T L, Liou D L, et al (1993). Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology, 109: 89–111

    Article  Google Scholar 

  • Li T F, Yang J S, Zhang R Y (2003). Peridotite from the pro-pilot hole (PP1) of the Chinese continental scientific drilling project and its bearing on depleted and metasomatic upper mantle. Acta Geol Sin, 77: 492–509 (in Chinese with English abstract)

    Google Scholar 

  • Liu R X (1990). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Publishing House, 1–43 (in Chinese)

    Google Scholar 

  • Lu F X, Wang C Y, Zheng J P, et al (2003). Lithospheric composition and structure of north boundary of Qinling: study on deep-seated xenoliths from Minggang area of Henan Province. Science in China (Ser. D), 33: 1–9 (in Chinese)

    Article  Google Scholar 

  • Lu F X, Zheng J P (1996). Palaeozoic nature and deep processes of lithospheric mantle beneath North China. In: Chi J S, Lu F X, eds. Kimberlites and Palaeozoic Mantle Beneath North China Platform. Beijing: Science Press (in Chinese)

    Google Scholar 

  • Lu F X, Zheng J P, Zhang R S, et al (2006). Interaction between crust and weakening lithospheric mantle: taking the Yanshan orogenic belt as an example. Earth Science—Journal of China University of Geosciences, 31(1): 1–7 (in Chinese with English abstract)

    Google Scholar 

  • Menzies M A, Fan W, Ming Z (1993). Palaeozoic and Cenozoic lithoprobes and loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. London: Geol Soc Spec Pub, 76: 71–81

    Google Scholar 

  • Nixon P H (1987). Kimberlitic xenoliths and their cratonic setting. In: Nixon P H, ed. Mantle xenoliths. John Wiley and Sons, Chicheste, 215–239

    Google Scholar 

  • Wang D Y, Xu W L, Feng H, et al. (2002). Nature of Late Mesozoic lithospheric mantle in western Liaoning Province: evidences from basalt and the mantle-derived xenoliths. Journal of Jilin University (Earth Science Edition), 32: 319–324 (in Chinese with English abstract)

    Google Scholar 

  • Wang Y, Ling W L, Lu F X (1997). New emplacement age of Shandong Mengyin kimberlite. Geological Science and Technology Information, 9(3): 8–12 (in Chinese with English abstract)

    Google Scholar 

  • Wu F Y, Ge W C, Sun D Y (2003). Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers, 10(3): 51–60 (in Chinese with English abstract)

    Google Scholar 

  • Xu J W, Zhu G, Tong W X, et al (1987). Formation and evolution of the Tancheng-Lujiang wrench fault system: a major shear system to the northwest of the Pacific Ocean. Tectonophysics, 134: 273–310

    Article  Google Scholar 

  • Xu W L, Zheng C Q, Wang D Y (1999). Discovery and significance of mantle and lower-crust xenoliths in mesozoic trachytic basalts from the western of Liaoning Province. Geological Review, 45(Suppl): 444–449 (in Chinese with English abstract)

    Google Scholar 

  • Xu Y G (1999). Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning. Bulletin of Mineralogy, Petrology and Geochemistry, 18(1): 1–5 (in Chinese with English abstract)

    Google Scholar 

  • Xu Y G (2001). Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9–10): 747–757

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, et al (2002). Mesozoic lithosphere destruction beneath the North China craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of fangcheng basalts. Contrib Mineral Petrol, 144: 241–253

    Article  Google Scholar 

  • Zhang H F, Zheng J P (2003). Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China craton: a case study in Fuxin, Liaoning Province. Chinese Science Bulletin, 48(9): 924–930

    Article  Google Scholar 

  • Zhao G C, Cawood P A, Wilde S A, et al (2000). Metamorphism of basement rocks in the central zone of the North China craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103: 55–88

    Article  Google Scholar 

  • Zheng J P (1999). Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning, East China. Wuhan: China University of Geosciences Press (in Chinese with English abstract)

    Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, et al (2004a). U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contrib Mineral Petrol, 148: 79–103

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, et al (2004b). 3.6 Ga Lower crust in central China: new evidence on the assembly of the North China craton. Geology, 32: 229–232

    Article  Google Scholar 

  • Zheng J P, Zhang R S, Yu C M, et al (2004c). An In Situ Zircon Hf Isotopic, U-Pb age and trace element study of monzonite xenoliths from Pingquan and Fuxin basalts: tracking the thermal events of 169 Ma and 107 Ma in Yanliao area. Science in China (Ser D), 47(Suppl 2): 39–52

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, et al (2005a). Late Mesozoic-Eocene mantle replacement beneath the eastern North China craton: evidences from the Paleozoic and Cenozoic peridotite xenoliths. Intern Geol Rev, 47: 457–472

    Google Scholar 

  • Zheng J P, Sun M, Zhou M F, et al (2005b). Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China craton. Geochim Cosmochim Acta, 69: 3401–3418

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, et al (1998). Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton. Int Geol Rev, 40: 471–499

    Article  Google Scholar 

  • Zheng J P, O’Reilly S Y, Griffin W L, et al (2001). Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution. Lithos, 57: 43–66

    Article  Google Scholar 

  • Zhou X H, Sun M, Zhang G H, et al (2002). Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba. Sino-Korean craton Lithos, 62: 111–124

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Jianping.

Additional information

Translated from Earth Science—Journal of China University of Geosciences, 2006, 31(1): 49–56 [译自: 地球科学—中国地质大学学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Yu, C., Yuan, X. et al. Petrochemistry of peridotites from North China: Significance for lithospheric mantle evolution. Front. Earth Sci. China 1, 37–43 (2007). https://doi.org/10.1007/s11707-007-0006-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-007-0006-5

Keywords

Navigation