Skip to main content
Log in

Preparation of a wearable K-PAN@CuS composite fabric with excellent photothermal/electrothermal properties

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun nanofibers with highly efficient photothermal/electrothermal performance are extremely popular because of their great potential in wearable heaters. However, the lack of necessary wearable properties such as high mechanical strength and quick response of electrospun micro/nanofibers seriously affects their practical application. In this work, a technical route combining electrospinning and surface modification technology is proposed. The 3-triethoxysilylpropylamine-polyacrylonitrile@ copper sulfide (K-PAN@CuS) composite fabric was achieved by modifying the original electrospinning PAN fiber and subsequently loading CuS nanoparticles. The results show that the break strength of the K-PAN@CuS fabric was increased by 10 times compared to that of the original PAN@CuS fabric. Furthermore, the saturated temperature of the K-PAN@CuS fabric heater could reach 116 °C within 15 s at a relatively low voltage of 3 V and 120.3 °C within 10 s under an infrared therapy lamp (100 W). In addition, due to its excellent conductivity, such a unique structural design enables the fiber to be closely attached to the human skin and helps to monitor human movements. This K-PAN@CuS fabric shows great potential in wearable heaters, hyperthermia, all-weather thermal management, and in vitro physical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li S, Zhang Y, Wang Y, et al. Physical sensors for skin-inspired electronics. InfoMat, 2020, 2(1): 184–211

    Article  CAS  Google Scholar 

  2. Chao M, Wang Y, Ma D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. Nano Energy, 2020, 78: 105187

    Article  CAS  Google Scholar 

  3. Agcayazi T, Chatterjee K, Bozkurt A, et al. Flexible interconnects for electronic textiles. Advanced Materials Technologies, 2018, 3(10): 1700277

    Article  Google Scholar 

  4. Lee S J, Kim C L. Highly flexible, stretchable, durable conductive electrode for human-body-attachable wearable sensor application. Polymer Testing, 2023, 122: 108018

    Article  CAS  Google Scholar 

  5. Wang B, Facchetti A. Mechanically flexible conductors for stretchable and wearable E-skin and E-textile devices. Advanced Materials, 2019, 31(28): 1901408

    Article  Google Scholar 

  6. Cai G, Yang M, Xu Z, et al. Flexible and wearable strain sensing fabrics. Chemical Engineering Journal, 2017, 325: 396–403

    Article  CAS  Google Scholar 

  7. He P, Pu H, Li X, et al. CNTs-coated TPU/ANF composite fiber with flexible conductive performance for joule heating, photothermal, and strain sensing. Journal of Applied Polymer Science, 2023, 140(13): e53668

    Article  CAS  Google Scholar 

  8. Wang S, Chen W, Wang L, et al. Multifunctional nanofiber membrane with anti-ultraviolet and thermal regulation fabricated by coaxial electrospinning. Journal of Industrial and Engineering Chemistry, 2022, 108: 449–455

    Article  CAS  Google Scholar 

  9. Wang H, Ma Y, Qu J, et al. Multifunctional PAN/Al−ZnO/Ag nanofibers for infrared stealth, self-cleaning, and antibacterial applications. ACS Applied Nano Materials, 2022, 5(1): 782–790

    Article  CAS  Google Scholar 

  10. Wu F, Tian Z, Hu P, et al. Lightweight and flexible PAN@PPy/Mxene films with outstanding electromagnetic interference shielding and joule heating performance. Nanoscale, 2022, 14(48): 18133–18142

    Article  CAS  PubMed  Google Scholar 

  11. Qi H, Yang L, Tang X, et al. Electrospun light stimulus response-enhanced anisotropic conductive Janus membrane with up/down-conversion luminescence. Materials Chemistry Frontiers, 2022, 6(16): 2219–2232

    Article  CAS  Google Scholar 

  12. Liu Z, Tian B, Liu X, et al. Multifunctional nanofiber mat for high temperature flexible sensors based on electrospinning. Journal of Alloys and Compounds, 2023, 941: 168959

    Article  CAS  Google Scholar 

  13. Al-Hamry A, Lu T, Bai J, et al. Versatile sensing capabilities of layer-by-layer deposited polyaniline-reduced graphene oxide composite-based sensors. Sensors and Actuators B: Chemical, 2023, 390: 133988

    Article  CAS  Google Scholar 

  14. Liu B, Zhang Q, Huang Y, et al. Bifunctional flexible fabrics with excellent joule heating and electromagnetic interference shielding performance based on copper sulfide/glass fiber composites. Nanoscale, 2021, 13(44): 18558–18569

    Article  CAS  PubMed  Google Scholar 

  15. Svyntkivska M, Makowski T, Shkyliuk I, et al. Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and modification with multiwall carbon nanotubes. International Journal of Biological Macromolecules, 2023, 242: 124730

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Li T Y, Geng W H, et al. Flexible wearable electronic fabrics with dual functions of efficient EMI shielding and electric heating for triboelectric nanogenerators. ACS Applied Materials & Interfaces, 2023, 15(18): 22762–22776

    Article  CAS  Google Scholar 

  17. Wang Y, Chen J, Shen Y, et al. Control of conductive and mechanical performances of poly(amide–imide) composite films utilizing synergistic effect of polyaniline and multi-walled carbon nanotube. Polymer Engineering and Science, 2019, 59(s2): E224–E230

    Article  CAS  Google Scholar 

  18. Xiong F, Yuan K, Aftab W, et al. Copper sulfide nanodisk-doped solid–solid phase change materials for full spectrum solar-thermal energy harvesting and storage. ACS Applied Materials & Interfaces, 2021, 13(1): 1377–1385

    Article  CAS  Google Scholar 

  19. Singh N. Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges. Frontiers of Materials Science, 2023, 17(3): 230632

    Article  Google Scholar 

  20. Kim M R, Hafez H A, Chai X, et al. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes. Nanoscale, 2016, 8(26): 12946–12957

    Article  CAS  PubMed  Google Scholar 

  21. Liu P, Li Y, Xu Y, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure. Small, 2018, 14(4): 1702926

    Article  Google Scholar 

  22. Jang H S, Jeon S K, Nahm S H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon, 2011, 49(1): 111–116

    Article  CAS  Google Scholar 

  23. Xue C H, Du M M, Guo X J, et al. Fabrication of superhydrophobic photothermal conversion fabric via layer-by-layer assembly of carbon nanotubes. Cellulose, 2021, 28(8): 5107–5121

    Article  CAS  Google Scholar 

  24. Zhao Y, Meng Y, Yu P, et al. Modified reduced graphene oxide-LDH/WPU nanohybrid coated nylon 6 fabrics for durable photothermal conversion performance. Applied Surface Science, 2023, 622: 156900

    Article  CAS  Google Scholar 

  25. Bhattacharjee S, Macintyre C R, Bahl P, et al. Reduced graphene oxide and nanoparticles incorporated durable electroconductive silk fabrics. Advanced Materials Interfaces, 2020, 7(20): 2000814

    Article  CAS  Google Scholar 

  26. Li H, Pan Y, Du Z. Self-reduction assisted MXene/silver composite tencel cellulose-based fabric with electrothermal conversion and NIR photothermal actuation. Cellulose, 2022, 29(15): 8427–8441

    Article  CAS  Google Scholar 

  27. Zhang Y, Su H, Li H, et al. Enhanced photovoltaic–pyroelectric coupled effect of BiFeO3/Au/ZnO heterostructures. Nano Energy, 2021, 85: 105968

    Article  CAS  Google Scholar 

  28. Ly T N, Park S. Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2020, 82: 122–129

    Article  CAS  Google Scholar 

  29. Zhang Y, Ren H, Chen H, et al. Cotton fabrics decorated with conductive graphene nanosheet inks for flexible wearable heaters and strain sensors. ACS Applied Nano Materials, 2021, 4(9): 9709–9720

    Article  CAS  Google Scholar 

  30. Zhang H, Ji H, Chen J, et al. A multi-scale MXene coating method for preparing washable conductive cotton yarn and fabric. Industrial Crops and Products, 2022, 188: 115653

    Article  CAS  Google Scholar 

  31. Fan Z, Wang Y, Jeon J, et al. Enhancing multiwalled carbon nanotubes/poly(amide–imide) interfacial strength through grafting polar conjugated polymer on multiwalled carbon nanotubes. Surfaces and Interfaces, 2022, 32: 102130

    Article  CAS  Google Scholar 

  32. Xu Q, Wang X, Zhang Y, et al. Temperature-controlled wearable heater of durably conductive cotton fabric prepared by composite coatings of silver/MXene and polydimethylsiloxane. Applied Surface Science, 2023, 625: 157176

    Article  CAS  Google Scholar 

  33. Cheng D, Liu Y, Zhang Y, et al. Polydopamine-assisted deposition of CuS nanoparticles on cotton fabrics for photocatalytic and photothermal conversion performance. Cellulose, 2020, 27(14): 8443–8455

    Article  CAS  Google Scholar 

  34. Ren Y, Yan B, Wang P, et al. Construction of a rapid photothermal antibacterial silk fabric via QCS-guided in situ deposition of CuSNPs. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 2192–2203

    Article  CAS  Google Scholar 

  35. Kim H J, Choi D I, Lee S, et al. Quick thermal response-transparent-wearable heater based on copper mesh/poly(vinyl alcohol) film. Advanced Engineering Materials, 2021, 23(10): 2100395

    Article  CAS  Google Scholar 

  36. Choi J, Byun M, Choi D. Transparent planar layer copper heaters for wearable electronics. Applied Surface Science, 2021, 559: 149895

    Article  CAS  Google Scholar 

  37. Kwon M, Kim H, Mohanty A K, et al. Molecular-level contact of graphene/silver nanowires through simultaneous dispersion for a highly stable wearable electrothermal heater. Advanced Materials Technologies, 2021, 6(9): 2100177

    Article  CAS  Google Scholar 

  38. Tan C, Dong Z, Li Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11(1): 3530

    Article  CAS  PubMed  Google Scholar 

  39. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20(6): 859–868

    Article  CAS  PubMed  Google Scholar 

  40. Liu Z, Zheng Y, Jin L, et al. Highly breathable and stretchable strain sensors with insensitive response to pressure and bending. Advanced Functional Materials, 2021, 31(14): 2007622

    Article  CAS  Google Scholar 

  41. Gao Q, Kopera B A F, Zhu J, et al. Breathable and flexible polymer membranes with mechanoresponsive electric resistance. Advanced Functional Materials, 2020, 30(26): 1907555

    Article  CAS  Google Scholar 

  42. Hong H, Jung Y H, Lee J S, et al. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Advanced Functional Materials, 2019, 29(37): 1902575

    Article  Google Scholar 

  43. Cai Q, Scullion D, Gan W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science Advances, 2019, 5(6): eaav0129

    Article  PubMed  Google Scholar 

  44. Guo Y, Qiu H, Ruan K, et al. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Letters, 2022, 14(1): 26

    Article  CAS  Google Scholar 

  45. Chen H, Ginzburg V V, Yang J, et al. Thermal conductivity of polymer-based composites: fundamentals and applications. Progress in Polymer Science, 2016, 59: 41–85

    Article  CAS  Google Scholar 

  46. Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: mechanisms, parameters and theory. Progress in Polymer Science, 2016, 61: 1–28

    Article  CAS  Google Scholar 

  47. Wen Z, Wang S, Bao Z, et al. Preparation and oil absorption performance of polyacrylonitrile fiber oil absorption material. Water, Air, and Soil Pollution, 2020, 231(4): 153

    Article  CAS  Google Scholar 

  48. Wang Y, Wang W, Liu B, et al. Preparation of durable antibacterial and electrically conductive polyacrylonitrile fibers by copper sulfide coating. Journal of Applied Polymer Science, 2017, 134(44): 45496

    Article  Google Scholar 

  49. Sun Y, Liu Y, Zheng Y, et al. Enhanced energy harvesting ability of ZnO/PAN hybrid piezoelectric nanogenerators. ACS Applied Materials & Interfaces, 2020, 12(49): 54936–54945

    Article  CAS  Google Scholar 

  50. Chae H G, Sreekumar T V, Uchida T, et al. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, 2005, 46(24): 10925–10935

    Article  CAS  Google Scholar 

  51. Abdel-Mottaleb M M, Mohamed A, Karim S A, et al. Preparation, characterization, and mechanical properties of polyacrylonitrile (PAN)/graphene oxide (GO) nanofibers. Mechanics of Advanced Materials and Structures, 2020, 27(4): 346–351

    Article  Google Scholar 

  52. Hu S, Zheng Z, Tian Y, et al. Preparation and characterization of electrospun PAN−CuCl2 composite nanofiber membranes with a special net structure for high-performance air filters. Polymers, 2022, 14(20): 4387

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Liu D, Pan W, et al. Flexible stretchable electrothermally/photothermally dual-driven heaters from nanoembedded hierarchical CuxS-coated PET fabrics for all-weather wearable thermal management. Journal of Colloid and Interface Science, 2022, 624: 564–578

    Article  CAS  PubMed  Google Scholar 

  54. Dong Y, Xu D, Yu H Y, et al. Highly sensitive, scrub-resistant, robust breathable wearable silk yarn sensors via interfacial multiple covalent reactions for health management. Nano Energy, 2023, 115: 108723

    Article  CAS  Google Scholar 

  55. Wang C, Li X, Gao E, et al. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Advanced Materials, 2016, 28(31): 6640–6648

    Article  CAS  PubMed  Google Scholar 

  56. He G, Wang L, Bao X, et al. Synergistic flame retardant weft-knitted alginate/viscose fabrics with MXene coating for multifunctional wearable heaters. Composites Part B: Engineering, 2022, 232: 109618

    Article  CAS  Google Scholar 

  57. Zhang T, Song B, Li X, et al. Multifunctional hydrophobic MXene-coated cotton fabrics for electro/photothermal conversion, electromagnetic interference shielding, and pressure sensing. ACS Applied Polymer Materials, 2023, 5(8): 6296–6306

    Article  CAS  Google Scholar 

  58. Yang Y, Zeng H, Zhou H, et al. Photothermal fabric based on in situ growth of CuO@Cu fractal dendrite fiber for personal thermal management. Advanced Engineering Materials, 2023, 25: 2300386

    Article  CAS  Google Scholar 

  59. Zhang T, Song B, Li X, et al. In-situ twisted spiral fiber with tree-ring like structure for joule heating, photothermal and humidity sensing. Polymer Testing, 2023, 127: 108173

    Article  CAS  Google Scholar 

  60. Li H, Wen H, Zhang Z, et al. Reverse thinking of the aggregation-induced emission principle: amplifying molecular motions to boost photothermal efficiency of nanofibers. Angewandte Chemie International Edition, 2020, 59(46): 20371–20375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Key Science and Technology Project of Henan Province (Grant No. 222102230093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Pan.

Ethics declarations

Declaration of competing interests The authors declare that they have no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Q., Pan, W. et al. Preparation of a wearable K-PAN@CuS composite fabric with excellent photothermal/electrothermal properties. Front. Mater. Sci. 17, 230670 (2023). https://doi.org/10.1007/s11706-023-0670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0670-8

Keywords

Navigation