Skip to main content
Log in

Mechanochromism of polyurethane based on folding—unfolding of cyano-substituted oligo(p-phenylene) vinylene dimer

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The incorporation of mechanophores, motifs that transform mechanical stimulus into chemical reaction or optical variation, allows creating materials with stress-responsive properties. The most widely used mechanophore generally features a weak bond, but its cleavage is typical an irreversible process. Here, we showed that this problem can be solved by folding—unfolding of a molecular tweezer. We systematically studied the mechanochromic properties of polyurethanes with cyano-substituted oligo(p-phenylene) vinylene (COP) tweezer (DPU). As a control experiment, a class of polyurethanes containing only a single COP moiety (MPU) was also prepared. The DPU showed prominent mechanochromic properties, due to the intramolecular folding-unfolding of COP tweezer under mechanical stimulus. The process was efficient, reversible and optical detectable. However, due to the disability to form either intramolecular folding or intermolecular aggregation, the MPU sample was mechanical inert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu H, Ma Z Y, Jia X R. Reaction cascades in polymer mechanochemistry. Materials Chemistry Frontiers, 2020, 4(11): 3115–3129

    Article  CAS  Google Scholar 

  2. Deneke N, Rencheck M L, Davis C S. An engineer’s introduction to mechanophores. Soft Matter, 2020, 16(27): 6230–6252

    Article  CAS  Google Scholar 

  3. Ciardelli F, Ruggeri G, Pucci A. Dye-containing polymers: methods for preparation of mechanochromic materials. Chemical Society Reviews, 2013, 42(3): 857–870

    Article  CAS  Google Scholar 

  4. Wiggins K M, Brantley J N, Bielawski C W. Methods for activating and characterizing mechanically responsive polymers. Chemical Society Reviews, 2013, 42(17): 7130–7147

    Article  CAS  Google Scholar 

  5. Li J, Nagamani C, Moore J S. Polymer mechanochemistry: from destructive to productive. Accounts of Chemical Research, 2015, 48(8): 2181–2190

    Article  CAS  Google Scholar 

  6. Zeng H, Leng J S, Gu J P, et al. A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers. Mechanics of Materials, 2018, 124: 18–25

    Article  Google Scholar 

  7. Zeng H, Leng J S, Gu J P, et al. Modeling the strain rate-, hold time-, and temperature-dependent cyclic behaviors of amorphous shape memory polymers. Smart Materials and Structures, 2018, 27(7): 075050

    Article  Google Scholar 

  8. Gu J P, Sun H Y, Fang C Q. A finite deformation constitutive model for thermally activated amorphous shape memory polymers. Journal of Intelligent Material Systems and Structures, 2015, 26(12): 1530–1538

    Article  CAS  Google Scholar 

  9. Cai H, Li X, Yin K, et al. A comparative study on the degradation properties of Mg wire/poly(lactic acid) composite rods: influence of rod diameter. Journal of Materials Engineering and Performance, 2022, 31(11): 9019–9028

    Article  CAS  Google Scholar 

  10. Karman M, Verde-Sesto E, Weder C. Mechanochemical activation of polymer-embedded photoluminescent benzoxazole moieties. ACS Macro Letters, 2018, 7(8): 1028–1033

    Article  CAS  Google Scholar 

  11. McFadden M E, Robb M J. Force-dependent multicolor mechanochromism from a single mechanophore. Journal of the American Chemical Society, 2019, 141(29): 11388–11392

    Article  CAS  Google Scholar 

  12. Chen H, Yang F Y, Chen Q, et al. A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Advanced Materials, 2017, 29(21): 1606900

    Article  Google Scholar 

  13. Jia Y, Wang S, Wang W J, et al. Design and synthesis of a well-controlled mechanoluminescent polymer system based on fluorescence resonance energy transfer with spiropyran as a force-activated acceptor and nitrobenzoxadiazole as a fluorescent donor. Macromolecules, 2019, 52(20): 7920–7928

    Article  CAS  Google Scholar 

  14. Lin Y J, Barbee M H, Chang C C, et al. Regiochemical effects on mechanophore activation in bulk materials. Journal of the American Chemical Society, 2018, 140(46): 15969–15975

    Article  CAS  Google Scholar 

  15. Sulkanen A R, Sung J, Robb M J, et al. Spatially selective and density-controlled activation of interfacial mechanophores. Journal of the American Chemical Society, 2019, 141(9): 4080–4085

    Article  CAS  Google Scholar 

  16. Wang T S, Zhang N, Dai J W, et al. Novel reversible mechanochromic elastomer with high sensitivity: bond scission and bending-induced multicolor switching. ACS Applied Materials & Interfaces, 2017, 9(13): 11874–11881

    Article  CAS  Google Scholar 

  17. Wang T S, Wang H X, Shen L, et al. Force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore. Chemical Communications, 2021, 57(94): 12675–12678

    Article  CAS  Google Scholar 

  18. Cawley P. Structural health monitoring: closing the gap between research and industrial deployment. Structural Health Monitoring, 2018, 17(5): 1225–1244

    Article  Google Scholar 

  19. Raisch M, Genovese D, Zaccheroni N, et al. Highly sensitive, anisotropic, and reversible stress/strain sensors from mechanochromic nanofiber composites. Advanced Materials, 2018, 30(39): 1802813

    Article  Google Scholar 

  20. Karman M, Verde-Sesto E, Weder C, et al. Mechanochemical fluorescence switching in polymers containing dithiomaleimide moieties. ACS Macro Letters, 2018, 7(9): 1099–1104

    Article  CAS  Google Scholar 

  21. Willis-Fox N, Rognin E, Aljohani T A, et al. Polymer mechanochemistry: manufacturing is now a force to be reckoned with. Chem, 2018, 4(11): 2499–2537

    Article  CAS  Google Scholar 

  22. Vidavsky Y, Yang S J, Abel B A, et al. Enabling room-temperature mechanochromic activation in a glassy polymer: synthesis and characterization of spiropyran polycarbonate. Journal of the American Chemical Society, 2019, 141(25): 10060–10067

    Article  CAS  Google Scholar 

  23. Kabb C P, Obryan C S, Morley C D, et al. Anthracene-based mechanophores for compression-activated fluorescence in polymeric networks. Chemical Science, 2019, 10(33): 7702–7708

    Article  CAS  Google Scholar 

  24. Magrini T, Kiebala D, Grimm D, et al. Tough bioinspired composites that self-report damage. ACS Applied Materials & Interfaces, 2021, 13(23): 27481–27490

    Article  CAS  Google Scholar 

  25. Kim T A, Lamuta C, Kim H, et al. Interfacial force-focusing effect in mechanophore-linked nanocomposites. Advancement of Science, 2020, 7: 1903464

    CAS  Google Scholar 

  26. Seshimo K, Sakai H, Watabe T, et al. Segmented polyurethane elastomers with mechanochromic and self-strengthening functions. Angewandte Chemie, 2021, 133(15): 8487–8490

    Article  Google Scholar 

  27. Pan Y F, Zhang H, Xu P X, et al. A mechanochemical reaction cascade for controlling load-strengthening of a mechanochromic polymer. Angewandte Chemie International Edition, 2020, 59(49): 21980–21985

    Article  CAS  Google Scholar 

  28. Rohde R C, Basu A, Okello L B, et al. Mechanochromic composite elastomers for additive manufacturing and low strain mechanophore activation. Polymer Chemistry, 2019, 10(44): 5985–5991

    Article  CAS  Google Scholar 

  29. Wu M J, Guo Z, He W Y, et al. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chemical Science, 2021, 12(4): 1245–1250

    Article  CAS  Google Scholar 

  30. Chen Y J, Yeh C J, Guo Q, et al. Fast reversible isomerization of merocyanine as a tool to quantify stress history in elastomers. Chemical Science, 2021, 12(5): 1693–1701

    Article  CAS  Google Scholar 

  31. Yang J H, Horst M, Werby S H, et al. Bicyclohexene-perinaphthalenes: scalable synthesis, diverse functionalization, efficient polymerization, and facile mechanoactivation of their polymers. Journal of the American Chemical Society, 2020, 142(34): 14619–14626

    Article  CAS  Google Scholar 

  32. Imato K, Yamanaka R, Nakajima H, et al. Fluorescent supramolecular mechanophores based on charge-transfer interactions. Chemical Communications, 2020, 56(57): 7937–7940

    Article  CAS  Google Scholar 

  33. Zhang Y X, Ren B P, Yang F Y, et al. Micellar-incorporated hydrogels with highly tough, mechanoresponsive, and self-recovery properties for strain-induced color sensors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(43): 11536–11551

    Article  CAS  Google Scholar 

  34. Versaw B A, Mcfadden M E, Husic C C, et al. Designing naphthopyran mechanophores with tunable mechanochromic behavior. Chemical Science, 2020, 11(17): 4525–4530

    Article  CAS  Google Scholar 

  35. Kim T A, Robb M J, Moore J S, et al. Mechanical reactivity of two different spiropyran mechanophores in polydimethylsiloxane. Macromolecules, 2018, 51(22): 9177–9183

    Article  CAS  Google Scholar 

  36. Qiu W L, Gurr P A, Qiao G G. Regulating color activation energy of mechanophore-linked multinetwork elastomers. Macromolecules, 2020, 53(10): 4090–4098

    Article  CAS  Google Scholar 

  37. Lee J P, Hwang H, Chae S, et al. A reversibly mechanochromic conjugated polymer. Chemical Communications, 2019, 55(63): 9395–9398

    Article  CAS  Google Scholar 

  38. Calvino C, Guha A, Weder C, et al. Self-calibrating mechanochromic fluorescent polymers based on encapsulated excimer-forming dyes. Advanced Materials, 2018, 30(19): 1704603

    Article  Google Scholar 

  39. Calvino C, Sagara Y, Buclin V, et al. Mechanoresponsive, luminescent polymer blends based on an excimer-forming telechelic macromolecule. Macromolecular Rapid Communications, 2019, 40(1): 1800705

    Article  Google Scholar 

  40. Pucci A, Di Cuia F, Signori F, et al. Bis(benzoxazolyl)stilbene excimers as temperature and deformation sensors for biodegradable poly(1,4-butylene succinate) films. Journal of Materials Chemistry, 2007, 17(8): 783–790

    Article  CAS  Google Scholar 

  41. Crenshaw B R, Weder C. Self-assessing photoluminescent polyurethanes. Macromolecules, 2006, 39(26): 9581–9589

    Article  CAS  Google Scholar 

  42. Sagara Y, Karman M, Verde-Sesto E, et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. Journal of the American Chemical Society, 2018, 140(5): 1584–1587

    Article  CAS  Google Scholar 

  43. Sagara Y, Karman M, Seki A, et al. Rotaxane-based mechanophores enable polymers with mechanically switchable white photoluminescence. ACS Central Science, 2019, 5(5): 874–881

    Article  CAS  Google Scholar 

  44. Muramatsu T, Sagara Y, Traeger H, et al. Mechanoresponsive behavior of a polymer-embedded red-light emitting rotaxane mechanophore. ACS Applied Materials & Interfaces, 2019, 11(27): 24571–24576

    Article  CAS  Google Scholar 

  45. Sagara Y, Traeger H, Li J, et al. Mechanically responsive luminescent polymers based on supramolecular cyclophane mechanophores. Journal of the American Chemical Society, 2021, 143(14): 5519–5525

    Article  CAS  Google Scholar 

  46. Chen J, Ziegler A W, Zhao B M, et al. Chemomechanical-force-induced folding-unfolding directly controls distinct fluorescence dual-color switching. Chemical Communications, 2017, 53(36): 4993–4996

    Article  CAS  Google Scholar 

  47. Traeger H, Sagara Y, Kiebala D J, et al. Folded perylene diimide loops as mechanoresponsive motifs. Angewandte Chemie International Edition, 2021, 60(29): 16191–16199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 52103141 and 51803090) and the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20181025 and BK20191022) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Sheng Wang.

Additional information

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Ma, XY., Li, S. et al. Mechanochromism of polyurethane based on folding—unfolding of cyano-substituted oligo(p-phenylene) vinylene dimer. Front. Mater. Sci. 17, 230640 (2023). https://doi.org/10.1007/s11706-023-0640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0640-1

Keywords

Navigation