Skip to main content

Advertisement

Log in

Facile and scalable preparation of ultra-large boron nitride nanosheets and their use for highly thermally conductive polymer composites

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Due to their excellent physical and chemical properties, boron nitride nanosheets (BNNSs) have shown great application potential in many fields. However, the difficulty in scalable preparation of large-size BNNSs is still the current factor that limits this. Herein, a simple yet efficient microwave-assisted chemical exfoliation strategy is proposed to realize scalable preparation of BNNSs by using perchloric acid as the edge modifier and intercalation agent of h-BN. The as-obtained BNNSs behave a thin-layered structure (average thickness of 3.9 nm) with a high yield of ∼16%. Noteworthy, the size of BNNSs is maintained to the greatest extent so as to realize the preparation of BNNSs with ultra-large size (up to 7.1 µm), which is the largest so far obtained for the top-down exfoliated BNNSs. Benefiting from the large size, it can significantly improve the thermal diffusion coefficient and the thermal conductivity of polyvinyl alcohol by 51 and 62 times respectively, both showing a higher value than the one previously reported. This demonstrates that the prepared BNNSs have great promise in enhancing the thermal conductivity of polymer materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics. Materials Today, 2014, 17(4): 163–174

    Article  CAS  Google Scholar 

  2. Lancaster A, Keswani M. Integrated circuit packaging review with an emphasis on 3D packaging. Integration, 2018, 60: 204–12

    Article  Google Scholar 

  3. Tan C, Dong Z, Li Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nature Communications, 2020, 11(1): 3530

    Article  CAS  Google Scholar 

  4. Feng C P, Chen L B, Tian G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Applied Materials & Interfaces, 2019, 11(20): 18739–18745

    Article  CAS  Google Scholar 

  5. Feng C P, Chen L B, Tian G L, et al. Robust polymer-based paperlike thermal interface materials with a through-plane thermal conductivity over 9 W·m−1·K−1. Chemical Engineering Journal, 2020, 392: 123784

    Article  CAS  Google Scholar 

  6. Yu C, Gong W, Tian W, et al. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W·m−1·K−1. Composites Science and Technology, 2018, 160: 199–207

    Article  CAS  Google Scholar 

  7. Zhang Z, Qu J, Feng Y, et al. Assembly of graphene-aligned polymer composites for thermal conductive applications. Composites Communications, 2018, 9: 33–41

    Article  Google Scholar 

  8. Singh S, Shervin S, Sun H, et al. Using mosaicity to tune thermal transport in polycrystalline aluminum nitride thin films. ACS Applied Materials & Interfaces, 2018, 10(23): 20085–20094

    Article  CAS  Google Scholar 

  9. Morishita T, Matsushita M, Katagiri Y, et al. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. Journal of Materials Chemistry, 2011, 21(15): 5610–5614

    Article  CAS  Google Scholar 

  10. Yu C, Zhang J, Li Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 98: 25–31

    Article  CAS  Google Scholar 

  11. Zhang J, Wang X, Yu C, et al. A facile method to prepare flexible boron nitride/poly (vinyl alcohol) composites with enhanced thermal conductivity. Composites Science and Technology, 2017, 149: 41–17

    Article  CAS  Google Scholar 

  12. Song W L, Wang P, Cao L, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angewandte Chemie, 2012, 124(26): 6604–6607

    Article  Google Scholar 

  13. Zhang K, Feng Y, Wang F, et al. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022

    Article  CAS  Google Scholar 

  14. Chen J, Huang X, Zhu Y, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Advanced Functional Materials, 2017, 27(5): 1604754

    Article  Google Scholar 

  15. Zhu Z, Li C, Songfeng E, et al. Enhanced thermal conductivity of polyurethane composites via engineering small/large sizes interconnected boron nitride nanosheets. Composites Science and Technology, 2019, 170: 93–100

    Article  CAS  Google Scholar 

  16. Lin Z, Mcnamara A, Liu Y, et al. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Composites Science and Technology, 2014, 90: 123–128

    Article  CAS  Google Scholar 

  17. Yuan F, Jiao W, Yang F, et al. Scalable exfoliation for large-size boron nitride nanosheets by low temperature thermal expansionassisted ultrasonic exfoliation. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(25): 6359–6368

    Article  CAS  Google Scholar 

  18. Joy J, George E, Haritha P, et al. An overview of boron nitride based polymer nanocomposites. Journal of Polymer Science, 2020, 58(22): 3115–3141

    Article  CAS  Google Scholar 

  19. Khan M H, Liu H K, Sun X, et al. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Materials Today, 2017, 20(10): 611–628

    Article  CAS  Google Scholar 

  20. Zhi C, Bando Y, Tang C, et al. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Advanced Materials, 2009, 21(28): 2889–2893

    Article  CAS  Google Scholar 

  21. Wang X, Yang Y, Jiang G, et al. A facile synthesis of boron nitride nanosheets and their potential application in dye adsorption. Diamond and Related Materials, 2018, 81: 89–95

    Article  CAS  Google Scholar 

  22. Jung J H, Park C H, Ihm J. A rigorous method of calculating exfoliation energies from first principles. Nano Letters, 2018, 18(5): 2759–2765

    Article  CAS  Google Scholar 

  23. Lin Y, Williams T V, Xu T B, et al. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. The Journal of Physical Chemistry C, 2011, 115(6): 2679–2685

    Article  CAS  Google Scholar 

  24. Deshmukh A R, Jeong J W, Lee S J, et al. Ultrasound-assisted facile green synthesis of hexagonal boron nitride nanosheets and their applications. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17114–17125

    Article  CAS  Google Scholar 

  25. Chen S, Xu R, Liu J, et al. Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Advanced Materials, 2019, 31(10): 1804810

    Article  Google Scholar 

  26. Lei W, Mochalin V N, Liu D, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 2015, 6: 8849

    Article  CAS  Google Scholar 

  27. Bhimanapati G R, Kozuch D, Robinson J A. Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale, 2014, 6(20): 11671–11675

    Article  CAS  Google Scholar 

  28. Zhao H R, Ding J H, Shao Z Z, et al. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers. ACS Applied Materials & Interfaces, 2019, 11(40): 37247–37255

    Article  CAS  Google Scholar 

  29. Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm, 2013, 15(9): 1782–1786

    Article  CAS  Google Scholar 

  30. Lee D, Lee B, Park K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Letters, 2015, 15(2): 1238–1244

    Article  CAS  Google Scholar 

  31. Hou J, Li G, Yang N, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Advances, 2014, 4(83): 44282–44290

    Article  CAS  Google Scholar 

  32. Cui Z, Oyer A J, Glover A J, et al. Large scale thermal exfoliation and functionalization of boron nitride. Small, 2014, 10(12): 2352–2355

    Article  CAS  Google Scholar 

  33. Geick R, Perry C H, Rupprecht G. Normal modes in hexagonal boron nitride. Physical Review, 1966, 146(2): 543–547

    Article  CAS  Google Scholar 

  34. Sainsbury T, Satti A, May P, et al. Oxygen radical functionalization of boron nitride nanosheets. Journal of the American Chemical Society, 2012, 134(45): 18758–18771

    Article  CAS  Google Scholar 

  35. Zhu W, Gao X, Li Q, et al. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angewandte Chemie, 2016, 128(36): 10924–10928

    Article  Google Scholar 

  36. Cheng Z L, Ma Z S, Ding H L, et al. Environmentally friendly, scalable exfoliation for few-layered hexagonal boron nitride nanosheets (BNNSs) by multi-time thermal expansion based on released gases. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(46): 14701–14708

    Article  CAS  Google Scholar 

  37. Chao Y, Liu M, Pang J, et al. Gas-assisted exfoliation of boron nitride nanosheets enhancing adsorption performance. Ceramics International, 2019, 45(15): 18838–18843

    Article  CAS  Google Scholar 

  38. Li L H, Cervenka J, Watanabe K, et al. Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano, 2014, 8(2): 1457–1462

    Article  CAS  Google Scholar 

  39. Gorbachev R V, Riaz I, Nair R R, et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small, 2011, 7(4): 465–468

    Article  CAS  Google Scholar 

  40. Li X, Hao X, Zhao M, et al. Exfoliation of hexagonal boron nitride by molten hydroxides. Advanced Materials, 2013, 25(15): 2200–2204

    Article  CAS  Google Scholar 

  41. Cao C, Xue Y, Liu Z, et al. Scalable exfoliation and gradable separation of boric-acid-functionalized boron nitride nanosheets. 2D Materials, 2019, 6(3): 035014

    Article  CAS  Google Scholar 

  42. Zhu M, Li G, Zhang X, et al. High yield and concentration exfoliation of defect-free 2D nanosheets via gentle water freezing-thawing approach and stabilization with PVP. Materials Research Express, 2019, 6(11): 1150c9

    Article  Google Scholar 

  43. Zhang C, Tan J, Pan Y, et al. Mass production of 2D materials by intermediate-assisted grinding exfoliation. National Science Review, 2020, 7(2): 324–332

    Article  CAS  Google Scholar 

  44. Xie B H, Huang X, Zhang G J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Composites Science and Technology, 2013, 85: 98–103

    Article  CAS  Google Scholar 

  45. E S, Zhu Z, Xie L, et al. An integrated strategy towards the high-yield fabrication of soluble boron nitride nanosheets. Chemical Engineering Journal, 2019, 360: 1407–1415

    Article  CAS  Google Scholar 

  46. Liu Z, Li J, Liu X. Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Applied Materials & Interfaces, 2020, 12(5): 6503–6515

    Article  CAS  Google Scholar 

  47. Fu K, Yang J, Cao C, et al. Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites. ACS Applied Materials & Interfaces, 2021, 13(2): 2853–2867

    Article  CAS  Google Scholar 

  48. Zeng X, Ye L, Yu S, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale, 2015, 7(15): 6774–6781

    Article  CAS  Google Scholar 

  49. Wang M, Jiao Z, Chen Y, et al. Enhanced thermal conductivity of poly(vinylidene fluoride)/boron nitride nanosheet composites at low filler content. Composites Part A: Applied Science and Manufacturing, 2018, 109: 321–329

    Article  CAS  Google Scholar 

  50. Yin C G, Liu Z J, Mo R, et al. Copper nanowires embedded in boron nitride nanosheet-polymer composites with enhanced thermal conductivities for thermal management. Polymer, 2020, 195:122455

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Projects 52172052 and 51872253 supported by the National Natural Science Foundation of China and Project E2019203480 supported by the Hebei Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Zhang.

Additional information

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Guo, B., Liu, X. et al. Facile and scalable preparation of ultra-large boron nitride nanosheets and their use for highly thermally conductive polymer composites. Front. Mater. Sci. 16, 220587 (2022). https://doi.org/10.1007/s11706-022-0587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-022-0587-7

Keywords

Navigation