Skip to main content
Log in

Reduced graphene oxide-based calcium alginate hydrogel as highly efficient solar steam generation membrane for desalination

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Solar-driven evaporation has been considered as one of the potential methods for desalination and sewage treatment. However, optical concentrators and complex multi-component systems are essential in advanced technologies, resulting in low efficiency and high cost. Here, we synthesize a reduced graphene oxide-based porous calcium alginate (CA-rGO) hydrogel which exhibits good performance in light absorption. More than 90% of the light in the whole spectrum can be absorbed. Meanwhile, the water vapor escapes from the CA-rGO film extremely fast. The water evaporation rate is 1.47 kg·m−2·h−1, corresponding to the efficiency 77% under only 1 kW·m−2 irradiation. The high evaporation efficiency is attributed to the distinctive structure of the film, which contains inherent porous structure of hydrogel enabling rapid water transport throughout the film, and the concave water surfaces formed in the hydrophilic pores provide a large surface area for evaporation. Hydrophobic rGO divides the evaporation surface and provides a longer three-phase evaporation line. The test on multiple cyclic radiation shows that the material has good stability. The CA-rGO hydrogel may have promising application as a membrane for solar steam generation in desalination and sewage treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333 (6043): 712–717

    Article  CAS  Google Scholar 

  2. Sharma P R, Sharma S K, Lindström T, et al. Nanocelluloseenabled membranes for water purification: Perspectives. Advanced Sustainable Systems, 2020, 4(5): 1900114

    Article  CAS  Google Scholar 

  3. Hillie T, Hlophe M. Nanotechnology and the challenge of clean water. Nature Nanotechnology, 2007, 2(11): 663–664

    Article  CAS  Google Scholar 

  4. Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522

    Article  CAS  Google Scholar 

  5. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nature Materials, 2017, 16(1): 16–22

    Article  Google Scholar 

  6. Zhou L, Li X Q, Ni G W, et al. The revival of thermal utilization from the Sun: interfacial solar vapor generation. National Science Review, 2019, 6(3): 562–578

    Article  CAS  Google Scholar 

  7. Lin Y, Xu H, Shan X L, et al. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(33): 19203–19227

    Article  CAS  Google Scholar 

  8. Ni G, Zandavi S H, Javid S M, et al. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science, 2018, 11(6): 1510–1519

    Article  CAS  Google Scholar 

  9. Li X Q, Lin R X, Ni G, et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment. National Science Review, 2018, 5(1): 70–77

    Article  CAS  Google Scholar 

  10. Li X Q, Min X Z, Li J L, et al. Storage and recycling of interfacial solar steam enthalpy. JOULE, 2018, 2(11): 2477–2484

    Article  Google Scholar 

  11. Tao P, Ni G, Song C, et al. Solar-driven interfacial evaporation. Nature Energy, 2018, 3(12): 1031–1041

    Article  Google Scholar 

  12. Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284

    Article  CAS  Google Scholar 

  13. Wang P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano, 2018, 5(5): 1078–1089

    CAS  Google Scholar 

  14. Zhang P, Liao Q, Yao H, et al. Direct solar steam generation system for clean water production. Energy Storage Materials, 2019, 18: 429–446

    Article  Google Scholar 

  15. Zhao F, Zhou X, Shi Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13(6): 489–495

    Article  CAS  Google Scholar 

  16. Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756

    Article  Google Scholar 

  17. Gao X, Ren H, Zhou J, et al. Synthesis of hierarchical graphdiynebased architecture for efficient solar steam generation. Chemistry of Materials, 2017, 29(14): 5777–5781

    Article  CAS  Google Scholar 

  18. Yang J, Pang Y, Huang W, et al. Functionalized graphene enables highly efficient solar thermal steam generation. ACS Nano, 2017, 11(6): 5510–5518

    Article  CAS  Google Scholar 

  19. Wang G, Fu Y, Guo A, et al. Reduced graphene oxidepolyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chemistry of Materials, 2017, 29(13): 5629–5635

    Article  CAS  Google Scholar 

  20. Yang Y, Zhao R, Zhang T, et al. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano, 2018, 12(1): 829–835

    Article  CAS  Google Scholar 

  21. Zhou L, Tan Y, Ji D, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Science Advances, 2016, 2(4): e1501227

    Article  Google Scholar 

  22. Fang J, Liu Q, Zhang W, et al. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(34): 17817–17821

    Article  CAS  Google Scholar 

  23. Liu Y, Chen J, Guo D, et al. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Applied Materials & Interfaces, 2015, 7(24): 13645–13652

    Article  CAS  Google Scholar 

  24. Zhang P, Li J, Lv L, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano, 2017, 11(5): 5087–5093

    Article  CAS  Google Scholar 

  25. Ren H, Tang M, Guan B, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Advanced Materials, 2017, 29(38): 1702590

    Article  Google Scholar 

  26. Hu X, Xu W, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031

    Article  Google Scholar 

  27. Ito Y, Tanabe Y, Han J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Advanced Materials, 2015, 27(29): 4302–4307

    Article  CAS  Google Scholar 

  28. Wang X, He Y, Cheng G, et al. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management, 2016, 130: 176–183

    Article  CAS  Google Scholar 

  29. Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 2015, 17: 290–301

    Article  CAS  Google Scholar 

  30. Yang Y, Que W, Zhao J, et al. Membrane assembled from antifouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chemical Engineering Journal, 2019, 373: 955–962

    Article  CAS  Google Scholar 

  31. Xu Y, Ma J, Liu D, et al. Origami system for efficient solar driven distillation in emergency water supply. Chemical Engineering Journal, 2019, 356: 869–876

    Article  CAS  Google Scholar 

  32. Yang P, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 2017, 10(9): 1923–1927

    Article  CAS  Google Scholar 

  33. Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics, 2016, 10(6): 393–398

    Article  CAS  Google Scholar 

  34. Sajadi S M, Farokhnia N, Irajizad P, et al. Flexible artificially-networked structure for ambient-high pressure solar steam generation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(13): 4700–4705

    Article  CAS  Google Scholar 

  35. Liu K K, Jiang Q, Tadepalli S, et al. Wood graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675–7681

    Article  CAS  Google Scholar 

  36. Wang Z, Liu Y, Tao P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface. Small, 2014, 10(16): 3234–3239

    Article  CAS  Google Scholar 

  37. Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization. Nature Communications, 2014, 5(1): 4449

    Article  CAS  Google Scholar 

  38. Li X, Xu W, Tang M, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953–13958

    Article  CAS  Google Scholar 

  39. Shan X, Lin Y, Zhao A, et al. Porous reduced graphene oxide/nickel foam for highly efficient solar steam generation. Nanotechnology, 2019, 30(42): 425403

    Article  CAS  Google Scholar 

  40. Shan X L, Zhao A Q, Lin Y W, et al. Low-cost, scalable, and reusable photothermal layers for highly efficient solar steam generation and versatile energy conversion. Advanced Sustainable Systems, 2020, 4(5): 1900153

    Article  CAS  Google Scholar 

  41. Ni G, Li G, Boriskina S V, et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126

    Article  CAS  Google Scholar 

  42. Finnerty C, Zhang L, Sedlak D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environmental Science & Technology, 2017, 51(20): 11701–11709

    Article  CAS  Google Scholar 

  43. Martinsen A, Skjåk-Braek G, Smidsrød O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and Bioengineering, 1989, 33(1): 79–89

    Article  CAS  Google Scholar 

  44. Martinsen A, Storrø I, Skjårk-Braek G. Alginate as immobilization material: III. Diffusional properties. Biotechnology and Bioengineering, 1992, 39(2): 186–194

    Article  CAS  Google Scholar 

  45. Amsden B, Turner N. Diffusion characteristics of calcium alginate gels. Biotechnology and Bioengineering, 1999, 65(5): 605–610

    Article  CAS  Google Scholar 

  46. Wendt D, Jakob M, Martin I. Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. Journal of Bioscience and Bioengineering, 2005, 100(5): 489–494

    Article  CAS  Google Scholar 

  47. Schneider A, Francius G, Obeid R, et al. Polyelectrolyte multilayers with a tunable Young’s modulus: Influence of film stiffness on cell adhesion. Langmuir, 2006, 22(3): 1193–1200

    Article  CAS  Google Scholar 

  48. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  CAS  Google Scholar 

  49. Singh V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56(8): 1178–1271

    Article  CAS  Google Scholar 

  50. Park S, Ruoff R S. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009, 4(4): 217–224

    Article  CAS  Google Scholar 

  51. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

    Article  CAS  Google Scholar 

  52. Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical Reviews, 2012, 112(11): 6027–6053

    Article  CAS  Google Scholar 

  53. Zheng X, Jia B, Lin H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6(1): 8433

    Article  CAS  Google Scholar 

  54. Jiang X F, Polavarapu L, Neo S T, et al. Graphene oxides as tunable broadband nonlinear optical materials for femtosecond laser pulses. The Journal of Physical Chemistry Letters, 2012, 3(6): 785–790

    Article  CAS  Google Scholar 

  55. Boukhvalov D W, Katsnelson M I, Son Y W. Origin of anomalous water permeation through graphene oxide membrane. Nano Letters, 2013, 13(8): 3930–3935

    Article  CAS  Google Scholar 

  56. Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    Article  CAS  Google Scholar 

  57. Kim H W, Yoon H W, Yoon S M, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95

    Article  CAS  Google Scholar 

  58. Li H, Song Z, Zhang X, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98

    Article  CAS  Google Scholar 

  59. Sun P, Zhu M, Wang K, et al. Selective ion penetration of graphene oxide membranes. ACS Nano, 2013, 7(1): 428–437

    Article  CAS  Google Scholar 

  60. Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754

    Article  CAS  Google Scholar 

  61. Mi B. Graphene oxide membranes for ionic and molecular sieving. Science, 2014, 343(6172): 740–742

    Article  CAS  Google Scholar 

  62. Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 2015, 25(29): 4664–4672

    Article  CAS  Google Scholar 

  63. Tian L, Anilkumar P, Cao L, et al. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials. ACS Nano, 2011, 5(4): 3052–3058

    Article  CAS  Google Scholar 

  64. Rogers R R, Yau M K. A Short Course in Cloud Physics. 3rd ed. Elsevier Science, 1989, 16

  65. Adediji A, Ajibade L T. Quality of well water in Ede Area, southwestern Nigeria. Journal of Human Ecology, 2005, 17(3): 223–228

    Article  Google Scholar 

  66. Iqbal H, Ishfaq M, Jabbar A, et al. Physico-chemical analysis of drinking water in district Kohat, Khyber Pakhtunkhwa, Pakistan. International Journal of Basic Medical Sciences and Pharmacy, 2013, 3(2): 37–41

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by the Zhejiang Provincial Natural Science Foundation of China (No. R21A020001), the National Natural Science Foundation of China (Grant No. 11774313), and the College Fund of Physics and Electronic Information Engineering of ZJNU (No. YS128X2001). J.K. was supported by the Start-up Fund of Zhejiang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianlong Kou or Fengmin Wu.

Additional information

Disclosure of potential conflicts of interests

The authors declare no competing financial interest.

Electronic supplementary material

Supplementary material, approximately 304 KB

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, G., Wang, Y., Ma, Y. et al. Reduced graphene oxide-based calcium alginate hydrogel as highly efficient solar steam generation membrane for desalination. Front. Mater. Sci. 15, 138–146 (2021). https://doi.org/10.1007/s11706-021-0536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0536-x

Keywords

Navigation