Skip to main content

Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics

Abstract

Polycyclic aromatic hydrocarbons with zigzag peripheries are high perspective candidates for organic electronics. However, large fused acenes are still poorly studied due to the tedious synthesis. Herein we report a non-substituted fused bistetracene DBATT (2.3,8.9-dibenzanthanthrene) as the semiconductor on low-voltage-driven organic thin-film transistors. The systematic studies of thin-film growth on various self-assembled monolayer (SAM) modified gate dielectrics and the electrical performances were carried out. The sub-monolayer of the semiconductor film shows larger island domains on the alkyl chain SAM. This device exhibits the hole mobility of 0.011 cm2·V−1·s−1 with a current ratio of IonIIoff above 105.

This is a preview of subscription content, access via your institution.

References

  1. Tang M L, Reichardt A D, Okamoto T, et al. Functionalized asymmetric linear acenes for high-performance organic semiconductors. Advanced Functional Materials, 2008, 18(10): 1579–1585

    Article  CAS  Google Scholar 

  2. Klauk H, Halik M, Zschieschang U, et al. High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 2002, 92(9): 5259–5263

    Article  CAS  Google Scholar 

  3. Cicoira F, Santato C, Dinelli F, et al. Morphology and field-effect-transistor mobility in tetracene thin films. Advanced Functional Materials, 2005, 15(3): 375–380

    Article  CAS  Google Scholar 

  4. Anthony J E. Functionalized acenes and heteroacenes for organic electronics. Chemical Reviews, 2006, 106(12): 5028–5048

    Article  CAS  Google Scholar 

  5. Watanabe M, Chang Y J, Liu S W, et al. The synthesis, crystal structure and charge-transport properties of hexacene. Nature Chemistry, 2012, 4(7): 574–578

    Article  CAS  Google Scholar 

  6. Pannemann C, Diekmann T, Hilleringmann U. Degradation of organic field-effect transistors made of pentacene. Journal of Materials Research, 2004, 19(7): 1999–2002

    Article  CAS  Google Scholar 

  7. Baeg K J, Caironi M, Noh Y Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Advanced Materials, 2013, 25(31): 4210–1244

    Article  CAS  Google Scholar 

  8. Zhang L, Fonari A, Liu Y, et al. Bistetracene: an air-stable, high-mobility organic semiconductor with extended conjugation. Journal of the American Chemical Society, 2014, 136(26): 9248–9251

    Article  CAS  Google Scholar 

  9. Sbargoud K, Mamada M, Jousselin-Oba T, et al. Low bandgap bistetracene-based organic semiconductors exhibiting air stability, high aromaticity and mobility. Chemistry, 2017, 23(21): 5076–5080

    Article  CAS  Google Scholar 

  10. Zhang L, Cao Y, Colella N S, et al. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Accounts of Chemical Research, 2015, 48(3): 500–509

    Article  CAS  Google Scholar 

  11. Wang Z, Li J, Zhang S, et al. Stable 2D bisthienoacenes: Synthesis, crystal packing, and photophysical properties. Chemistry, 2018, 24(54): 14442–14447

    Article  CAS  Google Scholar 

  12. Clar E. Research on the fine structure of anthanthrene and its benzologues according to the anellation procedure. Berichte der Deutschen Chemischen Gesellschaft, 1943, 76: 328–333

    Article  Google Scholar 

  13. Wang Z, Li R, Chen Y, et al. A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(6): 1308–1312

    Article  CAS  Google Scholar 

  14. Lungerich D, Papaianina O, Feofanov M, et al. Dehydrative π-extension to nanographenes with zig-zag edges. Nature Communications, 2018, 9(1): 4756

    Article  Google Scholar 

  15. Lenz T, Schmaltz T, Novak M, et al. Self-assembled monolayer exchange reactions as a tool for channel interface engineering in low-voltage organic thin-film transistors. Langmuir, 2012, 28(39): 13900–13904

    Article  CAS  Google Scholar 

  16. Kwok D Y, Neumann A W. Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 1999, 81(3): 167–249

    Article  CAS  Google Scholar 

  17. Virkar A A, Mannsfeld S, Bao Z, et al. Organic semiconductor growth and morphology considerations for organic thin-film transistors. Advanced Materials, 2010, 22(34): 3857–3875

    Article  CAS  Google Scholar 

  18. Wünsche J, Tarabella G, Bertolazzi S, et al. The correlation between gate dielectric, film growth, and charge transport in organic thin film transistors: the case of vacuum-sublimed tetracene thin films. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2013, 1(5): 967–976

    Article  Google Scholar 

  19. Akkerman H B, Mannsfeld S C B, Kaushik A P, et al. Effects of odd-even side chain length of alkyl-substituted diphenylbithiophenes on first monolayer thin film packing structure. Journal of the American Chemical Society, 2013, 135(30): 11006–11014

    Article  CAS  Google Scholar 

  20. Yoon M H, Kim C, Facchetti A, et al. Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. Journal of the American Chemical Society, 2006, 128(39): 12851–12869

    Article  CAS  Google Scholar 

  21. Halik M, Klauk H, Zschieschang U, et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature, 2004, 431(7011): 963–966

    Article  CAS  Google Scholar 

  22. Yokota T, Kajitani T, Shidachi R, et al. A few-layer molecular film on polymer substrates to enhance the performance of organic devices. Nature Nanotechnology, 2018, 13(2): 139–144

    Article  CAS  Google Scholar 

  23. Liu D, He Z, Su Y, et al. Self-assembled monolayers of cyclohexyl-terminated phosphonic acids as a general dielectric surface for high-performance organic thin-film transistors. Advanced Materials, 2014, 26(42): 7190–7196

    Article  CAS  Google Scholar 

  24. Lee H S, Kim D H, Cho J H, et al. Effect of the phase states of self-assembled monolayers on pentacene growth and thin-film transistor characteristics. Journal of the American Chemical Society, 2008, 130(32): 10556–10564

    Article  CAS  Google Scholar 

  25. Ji D, Li T, Zou Y, et al. Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. Nature Communications, 2018, 9: 2339

    Article  Google Scholar 

  26. Sinha S, Wang C H, Mukherjee M. Rubrene on differently treated SiO2/Si substrates: A comparative study by atomic force microscopy, X-ray absorption and photoemission spectroscopies techniques. Thin Solid Films, 2017, 638: 167–172

    Article  CAS  Google Scholar 

  27. Sbargoud K, Mamada M, Jousselin-Oba T, et al. Low bandgap bistetracene-based organic semiconductors exhibiting air stability, high aromaticity and mobility. Chemistry, 2017, 23(21): 5076–5080

    Article  CAS  Google Scholar 

  28. Takimiya K, Yamamoto T, Ebata H, et al. Design strategy for air-stable organic semiconductors applicable to high-performance field-effect transistors. Science and Technology of Advanced Materials, 2007, 8(4): 273–276

    Article  CAS  Google Scholar 

  29. Maliakal A, Raghavachari K, Katz H, et al. Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chemistry of Materials, 2004, 16(24): 4980–4986

    Article  CAS  Google Scholar 

  30. Klauk H, Schmid G, Radlik W, et al. Contact resistance in organic thin film transistors. Solid-State Electronics, 2003, 47(2): 297–301

    Article  CAS  Google Scholar 

  31. Kraft U, Sejfic M, Kang M J, et al. Flexible low-voltage organic complementary circuits: finding the optimum combination of semiconductors and monolayer gate dielectrics. Advanced Materials, 2015, 27(2): 207–214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG) — Projektnummer 182849149 — SFB 953, the Cluster of Excellence “Engineering of Advanced Materials” (EAM), the “Graduate School Molecular School”. B.Z. (201706060215) acknowledges the supporting in Germany from China Scholarship Council (CSC). D.L. thanks the Alexander von Humboldt Foundation and the Japan Society for the Promotion of Science (JSPS) for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baolin Zhao or Marcus Halik.

Additional information

Disclosure of potential conflicts of interests

The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Feofanov, M., Lungerich, D. et al. Non-substituted fused bis-tetracene based thin-film transistor with self-assembled monolayer hybrid dielectrics. Front. Mater. Sci. 14, 314–322 (2020). https://doi.org/10.1007/s11706-020-0518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0518-4

Keywords

  • fused bis-tetracene
  • organic field-effect transistor
  • contact resistance
  • self-assembled monolayer