Skip to main content
Log in

Facile synthesis of Cu-In-Zn-S alloy nanospheres for fast photoelectric detection across the visible spectrum

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Fast and broadband photoelectric detection is a key process to many photoelectronic applications, during which the semiconductor light absorber plays a critical role. In this report, we prepared Cu-In-Zn-S (CIZS) nanospheres with different compositions via a facile hydrothermal method. These nanospheres were ~200 nm in size and comprised of many small nanocrystals. A photodetector responded to the visible spectrum was demonstrated by spraying the solution processed nanospheres onto gold interdigital electrodes. The photoelectric characterization of these devices revealed that CIZS nanospheres with low molar ratio of n(Cu)/n(In) exhibited improved photoelectric response compared to those with high n(Cu)/n(In), which was attributed to the reduced defects. The relatively large switching ratio (Ion/Ioff), fast response and wide spectral coverage of the CIZS-based photodetector render it a promising potential candidate for photoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armin A, Jansen-van Vuuren R D, Kopidakis N, et al. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nature Communications, 2015, 6(1): 6343

    Article  CAS  Google Scholar 

  2. Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small, 2017, 13(43): 1701822

    Article  Google Scholar 

  3. García de Arquer F P, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2(3): 16100

    Article  Google Scholar 

  4. Qiu T, Hu Y, Xu F, et al. Recent advances in one-dimensional halide perovskites for optoelectronic applications. Nanoscale, 2018, 10(45): 20963–20989

    Article  CAS  Google Scholar 

  5. Wang H, Kim D H. Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46(17): 5204–5236

    Article  CAS  Google Scholar 

  6. Baeg K J, Binda M, Natali D, et al. Organic light detectors: photodiodes and phototransistors. Advanced Materials, 2013, 25 (31): 4267–4295

    Article  CAS  Google Scholar 

  7. Bao C, Zhu W, Yang J, et al. Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Applied Materials & Interfaces, 2016, 8(36): 23868–23875

    Article  CAS  Google Scholar 

  8. Litvin A P, Martynenko I V, Purcell-Milton F, et al. Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(26): 13252–13275

    Article  CAS  Google Scholar 

  9. Dong Y, Zou Y, Song J, et al. Recent progress of metal halide perovskite photodetectors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2017, 5(44): 11369–11394

    Article  CAS  Google Scholar 

  10. De Iacovo A, Venettacci C, Colace L, et al. PbS colloidal quantum dot photodetectors operating in the near infrared. Scientific Reports, 2016, 6(1): 37913

    Article  CAS  Google Scholar 

  11. Yarema O, Bozyigit D, Rousseau I, et al. Highly luminescent, size- and shape-tunable copper indium selenide based colloidal nanocrystals. Chemistry of Materials, 2013, 25(18): 3753–3757

    Article  CAS  Google Scholar 

  12. Lin Y, Zhang F, Pan D. A facile route to (ZnS)x(CuInS2)1−x hierarchical microspheres with excellent water-splitting ability. Journal of Materials Chemistry, 2012, 22(42): 22619–22623

    Article  CAS  Google Scholar 

  13. Chinen A B, Guan C M, Ferrer J R, et al. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 2015, 115(19): 10530–10574

    Article  CAS  Google Scholar 

  14. Liu S, Su X. The synthesis and application of I-III-VI type quantum dots. RSC Advances, 2014, 4(82): 43415–43428

    Article  CAS  Google Scholar 

  15. Li F, Guo C, Pan R, et al. Integration of green CuInS2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors. Optical Materials Express, 2018, 8 (2): 314–323

    Article  CAS  Google Scholar 

  16. Lu M L, Lai C W, Pan H J, et al. A facile integration of zero- (I-III-VI quantum dots) and one- (single SnO2 nanowire) dimensional nanomaterials: fabrication of a nanocomposite photodetector with ultrahigh gain and wide spectral response. Nano Letters, 2013, 13(5): 1920–1927

    Article  CAS  Google Scholar 

  17. Xu R, Ruan S, Zhang D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region. Journal of Alloys and Compounds, 2018, 751: 117–123

    Article  CAS  Google Scholar 

  18. Yarema O, Yarema M, Wood V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I-III-VI materials. Chemistry of Materials, 2018, 30(5): 1446–1461

    Article  CAS  Google Scholar 

  19. Zu Z, Hu W, Tang X, et al. A facile method for synthesizing AgInZnS/RGO nanocomposites and their photoelectric detection application. Materials Letters, 2016, 182: 240–243

    Article  CAS  Google Scholar 

  20. Wei J, Zang Z, Zhang Y, et al. Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Optics Letters, 2017, 42(5): 911–914

    Article  CAS  Google Scholar 

  21. Tang X, Zu Z, Zang Z, et al. CsPbBr3/reduced graphene oxide nanocomposites and their enhanced photoelectric detection application. Sensors and Actuators B: Chemical, 2017, 245: 435–440

    Article  CAS  Google Scholar 

  22. Zhang S, Wang X, Chen Y, et al. Ultrasensitive hybrid MoS2 ZnCdSe quantum dot photodetectors with high gain. ACS Applied Materials & Interfaces, 2019, 11(26): 23667–23672

    Article  CAS  Google Scholar 

  23. Wu H, Si H, Zhang Z, et al. All-inorganic perovskite quantum dotmonolayer MoS2 mixed-dimensional van der Waals heterostructure for ultrasensitive photodetector. Advanced Science, 2018, 5 (12): 1801219

    Article  Google Scholar 

  24. Guo R, Huang F, Zheng K, et al. CuInSe2 quantum dots hybrid hole transfer layer for halide perovskite photodetectors. ACS Applied Materials & Interfaces, 2018, 10(41): 35656–35663

    Article  CAS  Google Scholar 

  25. Sun H, Tian W, Cao F, et al. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Advanced Materials, 2018, 30(21): 1706986

    Article  Google Scholar 

  26. Tang X, Zu Z, Shao H, et al. All-inorganic perovskite CsPb(Br/I)3 nanorods for optoelectronic application. Nanoscale, 2016, 8(33): 15158–15161

    Article  CAS  Google Scholar 

  27. Chandrasekar P V, Yang S, Hu J, et al. A one-step method to synthesize CH3NH3PbI3:MoS2 nanohybrids for high-performance solution-processed photodetectors in the visible region. Nanotechnology, 2019, 30(8): 085707

    Article  CAS  Google Scholar 

  28. Maurya M R, Toutam V. Fast response UV detection based on waveguide characteristics of vertically grown ZnO nanorods partially embedded in anodic alumina template. Nanotechnology, 2019, 30(8): 085704

    Article  CAS  Google Scholar 

  29. Tang X, Tay Q, Chen Z, et al. Cu-In-Zn-S nanoporous spheres for highly efficient visible-light-driven photocatalytic hydrogen evolution. New Journal of Chemistry, 2013, 37(7): 1878–1882

    Article  CAS  Google Scholar 

  30. Li Y, Chen G, Wang Q, et al. Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure: facile synthesis, growth mechanism, and excellent photocatalytic activity. Advanced Functional Materials, 2010, 20(19): 3390–3398

    Article  CAS  Google Scholar 

  31. Zheng Z, Zhuge F, Wang Y, et al. Decorating perovskite quantum dots in TiO2 nanotubes array for broadband response photodetector. Advanced Functional Materials, 2017, 27(43): 1703115

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the funding support from the Natural Science Foundation of Jiangsu Province (project number BK20160278), the China Postdoctoral Science Foundation (2019M651677), the Jiangsu Shuangchuang Program, the National Key Research and Development Program of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 61975023 and 61674023), the Fundamental Research Funds for the Central Universities (106112017CDJQJ128837, 2019CDYGYB010, 2019CDYGYB019, and 2018CDQYDL0051), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjB0127), and the International Science & Technology Cooperation Program of China (2016YFE0119300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Tang.

Ethics declarations

Disclosure of potential conflicts of interests The authors declare no potential conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Yang, J., Zhu, Q. et al. Facile synthesis of Cu-In-Zn-S alloy nanospheres for fast photoelectric detection across the visible spectrum. Front. Mater. Sci. 14, 323–331 (2020). https://doi.org/10.1007/s11706-020-0514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0514-8

Keywords

Navigation