Advertisement

Frontiers of Materials Science

, Volume 11, Issue 2, pp 190–196 | Cite as

Microstructure and mechanical properties of tungsten composite reinforced by fibre network

  • Linhui Zhang
  • Yan Jiang
  • Qianfeng Fang
  • Zhuoming Xie
  • Shu Miao
  • Longfei Zeng
  • Tao Zhang
  • Xianping Wang
  • Changsong Liu
Research Article

Abstract

In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C-250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.

Keywords

tungsten-fibre-net spark plasma sintering recrystallization tensile test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Magnetic Confinement Fusion Program (Grant No. 2015GB112000), the National Natural Science Foundation of China (Grant Nos. 51301164, 11274305 and 11475216), and the Anhui Provincial Natural Science Foundation of China (1408085QE77).

References

  1. [1]
    Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials, 2016, 471: 1–7CrossRefGoogle Scholar
  2. [2]
    Li X W, Zhang M N, Zheng D H, et al. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2015, 629: 148–154CrossRefGoogle Scholar
  3. [3]
    Dai S Y,Wang L, Kirschner A, et al. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion, 2015, 55(4): 043003 (8 pages)CrossRefGoogle Scholar
  4. [4]
    Palacios T, Monge M A, Pastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials, 2016, 54: 433–438CrossRefGoogle Scholar
  5. [5]
    Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy, 1991, 20(3): 190–197Google Scholar
  6. [6]
    Giannattasio A, Yao Z, Tarleton E, et al. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine, 2010, 90(30): 3947–3959CrossRefGoogle Scholar
  7. [7]
    Miao S, Xie Z M, Yang X D, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials, 2016, 56: 8–17CrossRefGoogle Scholar
  8. [8]
    Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2015, 51: 180–187CrossRefGoogle Scholar
  9. [9]
    Liu S L, Ye X X, Jiang L, et al. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 655: 269–276CrossRefGoogle Scholar
  10. [10]
    Wang S, Chen C, Jia Y L, et al. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials, 2016, 58: 125–136CrossRefGoogle Scholar
  11. [11]
    Sinclair R, Preuss M, Maire E, et al. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia, 2004, 52(6): 1423–1438CrossRefGoogle Scholar
  12. [12]
    Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, 440(1–3): 272–277CrossRefGoogle Scholar
  13. [13]
    Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5-Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998, 46(17): 6089–6102CrossRefGoogle Scholar
  14. [14]
    Carvalho P A, Livramento V, Nunes D, et al. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8Google Scholar
  15. [15]
    Pemberton S R, Oberg E K, Dean J, et al. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71(3): 266–275CrossRefGoogle Scholar
  16. [16]
    Son C Y, Kim G S, Lee S B, et al. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(6): 1911–1920CrossRefGoogle Scholar
  17. [17]
    Zhang B, Fu H M, Sha P F, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2013, 566: 16–21CrossRefGoogle Scholar
  18. [18]
    Riesch J, Buffiere J Y, Hoschen T, et al. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia, 2013, 61(19): 7060–7071CrossRefGoogle Scholar
  19. [19]
    Riesch J, Aumann M, Coenen J W, et al. Chemically deposited tungsten fibre-reinforced tungsten–The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9: 75–83CrossRefGoogle Scholar
  20. [20]
    Zhang L H, Jiang Y, Fang Q F, et al. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 659: 29–36CrossRefGoogle Scholar
  21. [21]
    Du J, Höschen T, Rasinski M, et al. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2010, 527(6): 1623–1629CrossRefGoogle Scholar
  22. [22]
    Du J, Höschen T, Rasinski M, et al. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology, 2010, 70(10): 1482–1489CrossRefGoogle Scholar
  23. [23]
    Du J, Höschen T, Rasinski M, et al. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials, 2011, 417(1–3): 472–476CrossRefGoogle Scholar
  24. [24]
    Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials, 2014, 444(1–3): 175–180CrossRefGoogle Scholar
  25. [25]
    Asrar N, Meshkov L L, Sokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals, 1990, 43(6): 364–367Google Scholar
  26. [26]
    Lee M H, Das J, Sordelet D J, et al. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters, 2012, 101(12): 124103CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Linhui Zhang
    • 1
    • 2
  • Yan Jiang
    • 1
  • Qianfeng Fang
    • 1
    • 2
  • Zhuoming Xie
    • 1
    • 2
  • Shu Miao
    • 1
    • 2
  • Longfei Zeng
    • 1
    • 2
  • Tao Zhang
    • 1
  • Xianping Wang
    • 1
  • Changsong Liu
    • 1
  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.Graduate SchoolUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations