Advertisement

Frontiers of Materials Science

, Volume 11, Issue 1, pp 75–81 | Cite as

Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte

  • Xian-Ping Wang
  • Yi Zhang
  • Yu Xia
  • Wei-Bing Jiang
  • Hui Liu
  • Wang Liu
  • Yun-Xia Gao
  • Tao Zhang
  • Qian-Feng Fang
Research Article

Abstract

A novel micro-vibration sensitive-type high-damping Al matrix composites reinforced with Li7-xLa3Zr2-xNb x O12 (LLZNO, x = 0.25) was designed and prepared using an advanced spark plasma sintering (SPS) technique. The damping capacity and mechanical properties of LLZNO/Al composites (LLZNO content: 0-40 wt.%) were found to be greatly improved by the LLZNO addition. The maximum damping capacity and the ultimate tensile strength (UTS) of LLZNO/Al composite can be respectively up to 0.033 and 101.2 MPa in the case of 20 wt.% LLZNO addition. The enhancement of damping and mechanical properties of the composites was ascribed to the intrinsic high-damping capacity and strengthening effects of hard LLZNO particulate. This investigation provides a new insight to sensitively suppress micro-vibration of payloads in the aerospace environment.

Keywords

high-damping materials micro-vibration sensitivity LLZNO/Al metal matrix composites mechanical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51401203, 11274309, 11274305, and 11374299).

References

  1. [1]
    Arnon S, Kopeika N S. Laser satellite communication network vibration effect and possible solutions. Proceedings of the IEEE, 1997, 85(10): 1646–1661CrossRefGoogle Scholar
  2. [2]
    Orszulik P R, Shan J J. Active vibration control using genetic algorithm-based system identification and positive position feedback. Smart Materials and Structures, 2012, 21: 1–10Google Scholar
  3. [3]
    Shi J X, Hirano R, Shimoda M. Design optimization of damping material-inlaid plates for vibration control. Composite Structures, 2016, 148: 50–58CrossRefGoogle Scholar
  4. [4]
    Liu C C, Jing X J, Daley S, et al. Recent advances in microvibration isolation. Mechanical Systems and Signal Processing, 2015, 56–57: 55–80CrossRefGoogle Scholar
  5. [5]
    Remedia M, Aglietti G S, Richardson G. Modelling the effect of electrical harness on microvibration response of structures. Acta Astronautica, 2015, 109: 88–102CrossRefGoogle Scholar
  6. [6]
    Li W P, Huang H, Zhou X B, et al. Design and experiments of an active isolator for satellite micro-vibration. Chinese Journal of Aeronautics, 2014, 27(6): 1461–1468CrossRefGoogle Scholar
  7. [7]
    Wang Z H, Jia Y H, Xu S J, et al. Active vibration suppression in flexible spacecraft with optical measurement. Aerospace Science and Technology, 2016, 55: 49–56CrossRefGoogle Scholar
  8. [8]
    Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York/London: Academic Press, 1972Google Scholar
  9. [9]
    Yin F X, Iwasaki S, Ping D H, et al. Snoek-type high-damping alloys realized in ß-Ti alloys with high oxygen solid solution. Advanced Materials, 2006, 18(12): 1541–1544CrossRefGoogle Scholar
  10. [10]
    Wang W G, Li C, Li Y L, et al. Damping properties of Li5La3Ta2O12 particulates reinforced aluminum matrix composites. Materials Science and Engineering A, 2009, 518(1–2): 190–193CrossRefGoogle Scholar
  11. [11]
    Geiger C A, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorganic Chemistry, 2011, 50(3): 1089–1097CrossRefGoogle Scholar
  12. [12]
    Murugan R, Ramakumar S, Janani N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochemistry Communications, 2011, 13(12): 1373–1375CrossRefGoogle Scholar
  13. [13]
    Xia Y, Wang X P, Gao Y X, et al. Correlation of lithium ionic diffusion with Nb concentration in Li7–xLa3Zr2–xNbxO12 evaluated by internal friction method. Chinese Physics Letters, 2014, 31(1): 016201CrossRefGoogle Scholar
  14. [14]
    Wang X P, Gao Y X, Xia Y P, et al. Correlation and the mechanism of lithium ion diffusion with the crystal structure of Li7La3Zr2O12 revealed by an internal friction technique. Physical Chemistry Chemical Physics, 2014, 16(15): 7006–7014CrossRefGoogle Scholar
  15. [15]
    Zhang X Q, Liao L H, Ma N H, et al. Mechanical properties and damping capacity of magnesium matrix composites. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 2011–2016CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xian-Ping Wang
    • 1
  • Yi Zhang
    • 1
    • 2
  • Yu Xia
    • 1
  • Wei-Bing Jiang
    • 1
  • Hui Liu
    • 1
  • Wang Liu
    • 1
  • Yun-Xia Gao
    • 1
  • Tao Zhang
    • 1
  • Qian-Feng Fang
    • 1
  1. 1.Key Laboratory of Materials Physics, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations