Advertisement

Frontiers of Materials Science

, Volume 10, Issue 4, pp 422–427 | Cite as

Improvement in synthesis of (K0.5Na0.5)NbO3 powders by Ge4+ acceptor doping

  • Yajing Zhao
  • Yan Chen
  • Kepi Chen
Research Article

Abstract

In this paper, the effects of doping with GeO2 on the synthesis temperature, phase structure and morphology of (K0.5Na0.5)NbO3 (KNN) ceramic powders were studied using XRD and SEM. The results show that KNN powders with good crystallinity and compositional homogeneity can be obtained after calcination at up to 900°C for 2 h. Introducing 0.5 mol.% GeO2 into the starting mixture improved the synthesis of the KNN powders and allowed the calcination temperature to be decreased to 800°C, which can be ascribed to the formation of the liquid phase during the synthesis.

Keywords

lead-free piezoelectrics potassium sodium niobate synthesis acceptor doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jaffe B, Cook W R, Jaffe H. Piezoelectric Ceramics. New York: Academic Press, 1971Google Scholar
  2. [2]
    Safari A, Akdogan E K, eds. Piezoelectric and Acoustic Materials for Transducer Applications. New York: Springer, 2008CrossRefGoogle Scholar
  3. [3]
    Tichý J, Erhart J, Kittinger E, et al. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Berlin: Springer, 2010CrossRefGoogle Scholar
  4. [4]
    Uchino K. Ferroelectric Devices. 2nd ed. New York: CRC Press, 2009CrossRefGoogle Scholar
  5. [5]
    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84–87CrossRefGoogle Scholar
  6. [6]
    Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007, 19(1): 113–126CrossRefGoogle Scholar
  7. [7]
    Panda P K. Review: environmental friendly lead-free piezoelectric materials. Journal of Materials Science, 2009, 44(19): 5049–5062CrossRefGoogle Scholar
  8. [8]
    Rodel J, Jo W, Seifert K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153–1177CrossRefGoogle Scholar
  9. [9]
    Rodel J, Webber K G, Dittmer R, et al. Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 2015, 35(6): 1659–1681CrossRefGoogle Scholar
  10. [10]
    Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 2013, 96(12): 3677–3696CrossRefGoogle Scholar
  11. [11]
    Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chemical Reviews, 2015, 115(7): 2559–2595CrossRefGoogle Scholar
  12. [12]
    Wang X, Wu J, Xiao D, et al. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. Journal of the American Chemical Society, 2014, 136(7): 2905–2910CrossRefGoogle Scholar
  13. [13]
    Wang X, Wu J, Xiao D, et al. Large d 33 in (K,Na)(Nb,Ta,Sb)O3–(Bi,Na,K)ZrO3 lead-free ceramics. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(12): 4122–4126CrossRefGoogle Scholar
  14. [14]
    Matsubara M, Yamaguchi T, Kikuta K, et al. Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics, 2004, 43(10): 7159–7163CrossRefGoogle Scholar
  15. [15]
    Park S H, Ahn C W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(8B): L1072–L1074CrossRefGoogle Scholar
  16. [16]
    Matsubara M, Yamaguchi T, Kikuta K, et al. Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Japanese Journal of Applied Physics, 2005, 44(1A): 258–263CrossRefGoogle Scholar
  17. [17]
    Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society, 2005, 88(5): 1190–1196CrossRefGoogle Scholar
  18. [18]
    Park H Y, Choi J Y, Choi M K, et al. Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5) NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society, 2008, 91(7): 2374–2377CrossRefGoogle Scholar
  19. [19]
    Rubio-Marcos F, Romero J J, Navarro-Rojero MG, et al. Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. Journal of the European Ceramic Society, 2009, 29(14): 3045–3052CrossRefGoogle Scholar
  20. [20]
    Alkoy E M, Papila M. Microstructural features and electrical properties of copper oxide added potassium sodium niobate ceramics. Ceramics International, 2010, 36(6): 1921–1927CrossRefGoogle Scholar
  21. [21]
    Rubio-Marcos F, Marchet P, Vendrell X, et al. Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. Journal of Alloys and Compounds, 2011, 509(35): 8804–8811CrossRefGoogle Scholar
  22. [22]
    Chen K P, Zhang F L, Zhou J Q, et al. Effect of borax addition on sintering and electrical properties of (K0.5Na0.5)NbO3 lead-free piezoceramics. Ceramics International, 2015, 41(8): 10232–10236CrossRefGoogle Scholar
  23. [23]
    Chen K P, Zhou J Q, Zhang F L, et al. Screening sintering aids for (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2015, 98(6): 1698–1701CrossRefGoogle Scholar
  24. [24]
    Chen K P, Zhang F L, Jiao Y L, et al. Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. Journal of the American Ceramic Society, 2016, 99(5): 1681–1686CrossRefGoogle Scholar
  25. [25]
    Feizpour M, Ebadzadeh T, Jenko D. Synthesis and characterization of lead-free piezoelectric (K0.50Na0.50)NbO3 powder produced at lower calcination temperatures: A comparative study with a calcination temperature of 850°C. Journal of the European Ceramic Society, 2016, 36(7): 1595–1603CrossRefGoogle Scholar
  26. [26]
    Chen K P, Tang J, Chen Y. Compositional inhomogeneity and segregation in (K0.5Na0.5)NbO3 ceramics. Ceramics International, 2016, 42(8): 9949–9954CrossRefGoogle Scholar
  27. [27]
    Chen K P, Zhang F L, Li D S, et al. Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42(2): 2899–2903CrossRefGoogle Scholar
  28. [28]
    Murthy M K, Aguayo J. Studies in germanium oxide systems: II, phase equilibria in the system Na2O–GeO2. Journal of the American Ceramic Society, 1964, 47(9): 444–447CrossRefGoogle Scholar
  29. [29]
    Murthy M K, Long L, Ip J. Studies in germanium oxide systems: IV, phase equilibria in the system K2O–GeO2. Journal of the American Ceramic Society, 1968, 51(11): 661–662CrossRefGoogle Scholar
  30. [30]
    Bomlai P, Wichianrat P, Muensit S, et al. Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders. Journal of the American Ceramic Society, 2007, 90(5): 1650–1655CrossRefGoogle Scholar
  31. [31]
    Guo Y P, Kakimoto K, Ohsato H. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics. Japanese Journal of Applied Physics, 2004, 43(9B): 6662–6666CrossRefGoogle Scholar
  32. [32]
    Dai Y J, Zhang X W, Zhou G Y. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Applied Physics Letters, 2007, 90(26): 262903CrossRefGoogle Scholar
  33. [33]
    Dai Y J, Zhang X W, Chen K P. Morphotropic phase boundary and electrical properties of K1–xNaxNbO3 lead-free ceramics. Applied Physics Letters, 2009, 94(4): 042905CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Energy, Power and Mechanical EngineeringNorth China Electric Power UniversityBeijingChina
  2. 2.Chemical and Engineering Materials DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations