Frontiers of Materials Science

, Volume 10, Issue 4, pp 394–404 | Cite as

Surfactant-free synthesis of metallic bismuth spheres by microwave-assisted solvothermal approach as a function of the power level

  • Miriam Estrada Flores
  • Patricia Santiago Jacinto
  • Carmen M. Reza San Germán
  • Luis Rendón Vázquez
  • Raúl Borja Urby
  • Nicolás Cayetano Castro
Research Article


In the present work, the synthesis of micro- and nano-sized spheres of metallic bismuth by microwave-assisted solvothermal method is reported. The synthesis method was carried out at different power levels and at a unique frequency of microwave irradiation. The sphere sizes were controlled by the microwave power level and the concentration of dissolved precursor. Structural and morphological characterization was performed by SEM, HRTEM, EELS and XRD. The results demonstrated that rhombohedral zero valent Bi spheres were synthesized after microwave radiation at 600 and 1200 W. However, if the power level is decreased to 120W, a monoclinic phase of Bi2O3 is obtained with a flake-like morphology. In comparison with a conventional hydrothermal process, the microwave-assisted solvothermal approach provides many advantages such as shorter reaction time, optimum manipulation of morphologies and provides a specific chemical phase and avoids the mixture of structural phases and morphologies which is essential for further applications such as drug delivery or functionalization with organic materials, thanks to its biocompatibility.


microwave oven power level metallic bismuth spherical structures mechanism of formation electron energy loss spectroscopy (EELS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wu J, Yang H, Li H, et al. Microwave synthesis of bismuth nanospheres using bismuthcitrate as a precursor. Journal of Alloys and Compounds, 2010, 498(2): L8–L11CrossRefGoogle Scholar
  2. [2]
    Kharissova O V, Osorio M. Morphological studies of bismuth nanostructures prepared by hydrothermal microwave heating. MRS Online Proceeding Library, 2012, 1449: bb03–02Google Scholar
  3. [3]
    Liu X, Cao H, Yin J. Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Research, 2011, 4(5): 470–482CrossRefGoogle Scholar
  4. [4]
    Huang Q, Zhang S, Cai C, et al. ß- and a-Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B. Materials Letters, 2011, 65(6): 988–990CrossRefGoogle Scholar
  5. [5]
    Bartonickova E, Cihlar J, Castkova K. Microwave-assisted synthesis of bismuth oxide. Processing and Application of Ceramics, 2007, 1(1–2): 29–33CrossRefGoogle Scholar
  6. [6]
    Anandan S, Wu J J. Microwave assisted rapid synthesis of Bi2O3 short nanorods. Materials Letters, 2009, 63(27): 2387–2389CrossRefGoogle Scholar
  7. [7]
    Ma M G, Zhu J F, Sun R C, et al. Microwave-assisted synthesis of hierarchical Bi2O3 spheres assembled from nanosheets with pore structure. Materials Letters, 2010, 64(13): 1524–1527CrossRefGoogle Scholar
  8. [8]
    Jhung S H, Lee J H, Yoon J W, et al. Microwave synthesis of chromium terephtalate MIL-101 and its benzene sorption ability. Advanced Materials, 2007, 19(1): 121–124CrossRefGoogle Scholar
  9. [9]
    Zhu H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, 2009, 34(34): 5118–5120CrossRefGoogle Scholar
  10. [10]
    Wang X, Qu K, Xu B, et al. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. Journal of Materials Chemistry, 2011, 21(8): 2445–2450CrossRefGoogle Scholar
  11. [11]
    Panda A B, Glaspell G, El-Shall M S. Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. Journal of the American Chemical Society, 2006, 128(9): 2790–2791CrossRefGoogle Scholar
  12. [12]
    Tompsett G A, Conner W C, Yngvesson K S. Microwave synthesis of nanoporous materials. ChemPhysChem, 2006, 7(2): 296–319CrossRefGoogle Scholar
  13. [13]
    Borja-Urby R, Diaz-Torres L A, Garcia-Martinez I, et al. Crystalline and narrow band gap semiconductor BaZrO3: Bi–Si synthesized by microwave-hydrothermal synthesis. Catalysis Today, 2015, 250: 95–101CrossRefGoogle Scholar
  14. [14]
    Knochel P, Molander G A, eds. Comprehensive Organic Synthesis. 2nd ed. Oxford: Elsevier, 2014, 237–239 Google Scholar
  15. [15]
    Kappe C O. Speeding up solid-phase chemistry by microwave irradiation: A tool for high-throughput synthesis. American Laboratory, 2001, 33(10): 13–19Google Scholar
  16. [16]
    Sutton W H. Microwave processing of ceramic materials. American Ceramic Society Bulletin, 1989, 68: 376–386Google Scholar
  17. [17]
    Thostenson E T, Chou T W. Microwave processing: Fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1055–1071CrossRefGoogle Scholar
  18. [18]
    Zhu Y J, Chen F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chemical Reviews, 2014, 114(12): 6462–6555CrossRefGoogle Scholar
  19. [19]
    Leadbeater N E, ed. Microwave Heating as A Tool for Sustainable Chemistry. CRC Press, 2010, 6–9Google Scholar
  20. [20]
    Hayes B. Microwave Synthesis Chemistry at Speed of Light. USA: CEM Publishing, 2002, 14–16Google Scholar
  21. [21]
    Chandra U. Microwave Heating. Croatia: InTech, 2011, 3CrossRefGoogle Scholar
  22. [22]
    Kappe C O, Dallinger D, Murphree S S. Practical Microwave Synthesis for Organic Chemist, Strategies, Instruments and Protocols. Wiley-VCH, 2009, 11–15Google Scholar
  23. [23]
    Hasegawa Y, Murata M, Nakamura D, et al. Thermoelectric properties of bismuth micro/nanowire array elements pressured into a quartz template mold. Journal of Electronic Materials, 2009, 38(7): 944–949CrossRefGoogle Scholar
  24. [24]
    Dresselhaus M S, Dresselhaus G, Sun X, et al. Low-dimensional thermoelectric materials. Physics of the Solid State, 1999, 41(5): 679–682CrossRefGoogle Scholar
  25. [25]
    Boukai A, Xu K, Heath J R. Size-dependent transport and thermoelectric properties of individual polycrystalline bismuth nanowires. Advanced Materials, 2006, 18(7): 864–869CrossRefGoogle Scholar
  26. [26]
    Zhao X B, Ji X H, Zhang Y H, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotubecontaining nanocomposites. Applied Physics Letters, 2005, 86(6): 062111CrossRefGoogle Scholar
  27. [27]
    Zhou J, Jin C, Seol J H, et al. Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Applied Physics Letters, 2005, 87(13): 133109CrossRefGoogle Scholar
  28. [28]
    Poudel B, Hao Q, Ma Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638CrossRefGoogle Scholar
  29. [29]
    Mishra S K, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter, 1997, 9(2): 461–470Google Scholar
  30. [30]
    Maeder T. Review of Bi2O3 based glasses for electronics and related applications. International Materials Reviews, 2013, 58(1): 3–40CrossRefGoogle Scholar
  31. [31]
    Aviv H, Bartling S, Grinberg I, et al. Synthesis and characterization of Bi2O3/HSA core–shell nanoparticles for X-ray imaging applications. Journal of Biomedical Materials Research Part B, 2013, 101B(1): 101–138CrossRefGoogle Scholar
  32. [32]
    Abdullah A H, Ali N M, Ibrahim M, et al. Synthesis of bismuth vanadate as visible-light photocatalyst. The Malaysian Journal of Analytical Sciences, 2009, 13(2): 151–157Google Scholar
  33. [33]
    Brezesinski K, Ostermann R, Hartmann P, et al. Exceptional photocatalytic activity of ordered mesoporous ß-Bi2O3 thin films and electrospun nanofiber. Chemistry of Materials, 2010, 22(10): 3079–3085CrossRefGoogle Scholar
  34. [34]
    Salvador J A, Silvestre S M, Pinto R M. Bismuth(III) reagents in steroid and terpene chemistry. Molecules, 2011, 16(4): 2884–2913CrossRefGoogle Scholar
  35. [35]
    Lockner J. Bismuth in organic synthesis. Bulletin of the Chemical Society of Japan, 1996, 2673Google Scholar
  36. [36]
    Liao H, Nehl C L, Hafner J H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 2006, 1(2): 201–208CrossRefGoogle Scholar
  37. [37]
    Lin D J, Huang H L, Hsu J T, et al. Surface characterization of bismuth-doped anodized titanium. Journal of Medical and Biological Engineering, 2013, 33(6): 538–544CrossRefGoogle Scholar
  38. [38]
    Hernandez-Delgadillo R, Badireddy A R, Zaragoza-Magaña V, et al. Effect of lipophilic bismuth nanoparticles on erythrocytes. Journal of Nanomaterials, 2015, 264024 (9 pages)Google Scholar
  39. [39]
    Brown A L, Goforth A M. pH-Dependent synthesis and stability of aqueous, elemental bismuth glyconanoparticle colloids: Potentially biocompatible X-ray contrast agents. Chemistry of Materials, 2012, 24(9): 1599–1605CrossRefGoogle Scholar
  40. [40]
    Rieznichenko L S, Gruzina T G, Dybkova SM, et al. Investigation of bismuth nanoparticles antimicrobial activity against high pathogen microorganisms. American Journal of Bioterrorism, Biosecurity and Biodefense, 2015, 2(1): 1004Google Scholar
  41. [41]
    Gong J, Lee C S, Chang Y Y, et al. A novel self-assembling nanoparticle of Ag–Bi with high reactive efficiency. Chemical Communications, 2014, 50(62): 8597–8600CrossRefGoogle Scholar
  42. [42]
    Valverde-Aguilar G, Prado-Prone G, Vergara-Aragón P, et al. Photoconductivity studies on nanoporous TiO2/dopamine films prepared by sol–gel method. Applied Physics A, 2014, 116(3): 1075–1084CrossRefGoogle Scholar
  43. [43]
    Boeré R T, Duke M. Chemistry 2810 Laboratory Manual. Springer, 2003, 1–22Google Scholar
  44. [44]
    Wang Y, Zhao J, Zhao X, et al. A facile water-based process for preparation of stabilized Bi nanoparticles. Materials Research Bulletin, 2009, 44(1): 220–223CrossRefGoogle Scholar
  45. [45]
    Wang J, Wang X, Peng Q, et al. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorganic Chemistry, 2004, 43(23): 7552–7556CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miriam Estrada Flores
    • 1
    • 2
    • 3
  • Patricia Santiago Jacinto
    • 2
  • Carmen M. Reza San Germán
    • 3
  • Luis Rendón Vázquez
    • 2
  • Raúl Borja Urby
    • 4
  • Nicolás Cayetano Castro
    • 4
  1. 1.Instituto de Investigaciones en Materiales, Circuito Exterior S/N, Zona de InstitutosCiudad UniversitariaMéxico, D.F.México
  2. 2.Instituto de Física, Circuito de la Investigación Científica, Edificio Marcos Moshinsky, Laboratorio de Materiales NanoestructuradosCiudad UniversitariaMéxico, D.F.México
  3. 3.Escuela Superior de Ingeniería Química e Industrias Extractivas, Unidad Profesional Adolfo López Mateos Edif. Z-5 2do. PisoInstituto Politécnico NacionalMéxico, D.F.México
  4. 4.Centro de Nanociencias y Micro y Nanotecnologías.Instituto Politécnico NacionalMéxico, D.F.México

Personalised recommendations