Frontiers of Materials Science

, Volume 10, Issue 4, pp 413–421 | Cite as

Electrical properties and thermal sensitivity of Ti/Y modified CuO-based ceramic thermistors

Research Article

Abstract

The Ti/Y modified CuO-based negative temperature coefficient (NTC) thermistors, Cu0.988-2yY0.008Ti y O (TYCO; y = 0.01, 0.015, 0.03, 0.05 and 0.07), were synthesized through a wet-chemical method followed by a traditional ceramic sintering technology. The related phase component and electrical properties were investigated. XRD results show that the TYCO ceramics have a monoclinic structure as that of CuO crystal. The TYCO ceramics can be obtained at the sintering temperature 970°C-990°C, and display the typical NTC characteristic. The NTC thermal-sensitive constants of TYCO thermistors can be adjusted from 1112 to 3700 K by changing the amount of Ti in the TYCO ceramics. The analysis of complex impedance spectra revealed that both the bulk effect and grain boundary effect contribute to the electrical behavior and the NTC effect. Both the band conduction and electron-hopping models are proposed for the conduction mechanisms in the TYCO thermistors.

Keywords

CuO TiO2 substitution electrical property negative temperature coefficient conduction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. Journal of the American Ceramic Society, 2009, 92(5): 967–983CrossRefGoogle Scholar
  2. [2]
    Muralidharan M N, Rohini P R, Sunny E K, et al. Effect of Cu and Fe addition on electrical properties of Ni–Mn–Co–O NTC thermistor compositions. Ceramics International, 2012, 38(8): 6481–6486CrossRefGoogle Scholar
  3. [3]
    Golestani-Fard F, Azimi S, Mackenzie K J D. Oxygen evolution during the formation and sintering of nickel–manganese oxide spinels for thermistor applications. Journal of Materials Science, 1987, 22(8): 2847–2851CrossRefGoogle Scholar
  4. [4]
    Feltz A, Pölzl W. Spinel forming ceramics of the system FexNiyMn3–x–yO4 for high temperature NTC thermistor applications. Journal of the European Ceramic Society, 2000, 20(14): 2353–2366CrossRefGoogle Scholar
  5. [5]
    Fang D L, Chen C S, Winnubst A J A. Preparation and electrical properties of FexCu0.10Ni0.66Mn2.24–xO4 (0≤x≤0.90) NTC ceramics. Journal of Alloys and Compounds, 2008, 454(1): 286–291CrossRefGoogle Scholar
  6. [6]
    Park K, Han I H. Effect of Al2O3 addition on the microstructure and electrical properties of (Mn0.37Ni0.3Co0.33–xAlx)O4 (0≤x≤0.03) NTC thermistors. Materials Science and Engineering B, 2005, 119(1): 55–60CrossRefGoogle Scholar
  7. [7]
    Elilarassi R, Chandrasekaran G. Structural, optical and electron paramagnetic resonance studies on Cu-doped ZnO nanoparticles synthesized using a novel auto-combustion method. Frontiers of Materials Science, 2013, 7(2): 196–201CrossRefGoogle Scholar
  8. [8]
    Macklen E D. Electrical conductivity and cation distribution in nickel manganite. Journal of Physics and Chemistry of Solids, 1986, 47(11): 1073–1079CrossRefGoogle Scholar
  9. [9]
    Jung J, Töpfer J, Mürbe J, et al. Microstructure and phase development in NiMn2O4 spinel ceramics during isothermal sintering. Journal of the European Ceramic Society, 1990, 6(6): 351–359CrossRefGoogle Scholar
  10. [10]
    Fau P, Bonino J P, Demai J J, et al. Thin films of nickel manganese oxide for NTC thermistor applications. Applied Surface Science, 1993, 65: 319–324CrossRefGoogle Scholar
  11. [11]
    Basu A, Brinkman A W, Schmidt R. Effect of oxygen partial pressure on the NTCR characteristics of sputtered NixMn3–xO4+δ thin films. Journal of the European Ceramic Society, 2004, 24(6): 1247–1250CrossRefGoogle Scholar
  12. [12]
    Xue D, Zhang H, Li Y, et al. Electrical properties of hexagonal BaTi1–xFexO3–δ (x = 0.1, 0.2, 0.3) ceramics with NTC effect. Journal of Materials Science: Materials in Electronics, 2012, 23 (7): 1306–1312Google Scholar
  13. [13]
    Nobre M A L, Lanfredi S. Negative temperature coefficient thermistor based on Bi3Zn2Sb3O14 ceramic: an oxide semiconductor at high temperature. Applied Physics Letters, 2003, 82(14): 2284–2286CrossRefGoogle Scholar
  14. [14]
    Wang J, Zhang H, Xue D, et al. Electrical properties of hexagonal BaTi0.8Co0.2O3–δ ceramic with NTC effect. Journal of Physics D: Applied Physics, 2009, 42(23): 235103–235109CrossRefGoogle Scholar
  15. [15]
    Ouyang P, Zhang H, Xue D, et al. NTC characteristic of SnSb0.05O2–BaTi0.8Fe0.2O3 composite materials. Journal of Materials Science: Materials in Electronics, 2013, 24(10): 3932–3939Google Scholar
  16. [16]
    Upadhyay S, Parkash O, Kumar D. Synthesis, structure and electrical behaviour of lanthanum-doped barium stannate. Journal of Physics D: Applied Physics, 2004, 37(10): 1483–1491CrossRefGoogle Scholar
  17. [17]
    Zhang J, Zhang H, Yang B, et al. Temperature sensitivity of Fesubstituted SnO2-based ceramics as negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2016, 27(5): 4935–4942Google Scholar
  18. [18]
    Ouyang P, Zhang H, Zhang Y, et al. Zr-substituted SnO2-based NTC thermistors with wide application temperature range and high property stability. Journal of Materials Science: Materials in Electronics, 2015, 26(8): 6163–6169Google Scholar
  19. [19]
    Zhang Y, Wu Y, Zhang H, et al. Characterization of negative temperature coefficient of resistivity in (Sn1–xTix)0.95Sb0.05O2 (x≤0.1) ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25(12): 5552–5559Google Scholar
  20. [20]
    Ghijsen J, Tjeng L H, van Elp J, et al. Electronic structure of Cu2O and CuO. Physical Review B: Condensed Matter and Materials Physics, 1988, 38(16): 11322–11330CrossRefGoogle Scholar
  21. [21]
    Dubal D P, Gund G S, Holze R, et al. Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. Journal of Power Sources, 2013, 242: 687–698CrossRefGoogle Scholar
  22. [22]
    Chen W, Zhang H, Ma Z, et al. High electrochemical performance and lithiation–delithiation phase evolution in CuO thin films for Li-ion storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(27): 14202–14209CrossRefGoogle Scholar
  23. [23]
    Sumikura S, Mori S, Shimizu S, et al. Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194(2–3): 143–147CrossRefGoogle Scholar
  24. [24]
    Anandan S, Wen X, Yang S. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dyesensitized solar cells. Materials Chemistry and Physics, 2005, 93 (1): 35–40CrossRefGoogle Scholar
  25. [25]
    He H, Bourges P, Sidis Y, et al. Magnetic resonant mode in the single-layer high-temperature superconductor Tl2Ba2Cu6+δ. Science, 2002, 295(5557): 1045–1047CrossRefGoogle Scholar
  26. [26]
    Ramirez-Ortiz J, Ogura T, Medina-Valtierra J, et al. A catalytic application of Cu2O and CuO films deposited over fiberglass. Applied Surface Science, 2001, 174(3–4): 177–184CrossRefGoogle Scholar
  27. [27]
    Patil S J, Patil A V, Dighavkar C G, et al. Semiconductor metal oxide compounds based gas sensors: A literature review. Frontiers of Materials Science, 2015, 9(1): 14–37CrossRefGoogle Scholar
  28. [28]
    Yang B, Zhang H, Zhang J, et al. Electrical properties and temperature sensitivity of B-substituted CuO-based ceramics for negative temperature coefficient thermistors. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 10151–10158Google Scholar
  29. [29]
    Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, 1976, 32(5): 751–767CrossRefGoogle Scholar
  30. [30]
    Prasad N V, Prasad G, Bhimasankaram T, et al. Synthesis and electrical properties of SmBi5Fe2Ti3O18. Modern Physics Letters B, 1998, 12(10): 371–381CrossRefGoogle Scholar
  31. [31]
    Martínez R, Kumar A, Palai R, et al. Impedance spectroscopy analysis of Ba0.7Sr03TiO3/La0.7Sr0.3MnO3 heterostructure. Journal of Physics D: Applied Physics, 2011, 44(10): 105302–105310CrossRefGoogle Scholar
  32. [32]
    Azam A, Ahmed A S, Ansari M S, et al. Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. Journal of Alloys and Compounds, 2010, 506(1): 237–242CrossRefGoogle Scholar
  33. [33]
    Behera B, Nayak P, Choudhary R N P. Structural and impedance properties of KBa2V5O15 ceramics. Materials Research Bulletin, 2008, 43(2): 401–410CrossRefGoogle Scholar
  34. [34]
    Jonscher A K. The “universal” dielectric response. Nature, 1977, 267(5613): 673–679CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Bao Yang
    • 1
  • Hong Zhang
    • 1
    • 2
  • Jia Guo
    • 1
  • Ya Liu
    • 1
  • Zhicheng Li
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations