Skip to main content
Log in

Biomaterials for reconstruction of cranial defects

  • Mini-Review
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Reconstruction of cranial defect is commonly performed in neurosurgical operations. Many materials have been employed for repairing cranial defects. In this paper, materials used for cranioplasty, including autografts, allografts, and synthetic biomaterials are comprehensively reviewed. This paper also gives future perspective of the materials and development trend of manufacturing process for cranioplasty implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson D B. Embryonic development of the head and neck: Part 5, the brain and cranium. Head & Neck Surgery, 1980, 2(4): 312–320

    Article  Google Scholar 

  2. Hayashi S, Kim J H, Hwang S E, et al. Interface between intramembranous and endochondral ossification in human foetuses. Folia Morphologica, 2014, 73(2): 199–205

    Article  Google Scholar 

  3. Govindarajan V, Overbeek P A. FGF9 can induce endochondral ossification in cranial mesenchyme. BMC Developmental Biology, 2006, 6(1): 7

    Article  Google Scholar 

  4. Opperman L A. Cranial sutures as intramembranous bone growth sites. Developmental Dynamics, 2000, 219(4): 472–485

    Article  Google Scholar 

  5. Gagan J R, Tholpady S S, Ogle R C. Cellular dynamics and tissue interactions of the dura mater during head development. Birth Defects Research Part C: Embryo Today: Reviews, 2007, 81(4): 297–304

    Article  Google Scholar 

  6. Santaolalla-Montoya F, Martinez-Ibargüen A, Sánchez-Fernández J M, et al. Principles of cranial base ossification in humans and rats. Acta Oto-Laryngologica, 2012, 132(4): 349–354

    Article  Google Scholar 

  7. Sanan A, Haines S J. Repairing holes in the head: a history of cranioplasty. Neurosurgery, 1997, 40(3): 588–603

    Google Scholar 

  8. Andrushko V A, Verano J W. Prehistoric trepanation in the Cuzco region of Peru: a view into an ancient Andean practice. American Journal of Physical Anthropology, 2008, 137(1): 4–13

    Article  Google Scholar 

  9. Eftekhar B, Dadmehr M, Ghodsi M, et al. Cranial trephination in ancient Iran. Case illustration. Journal of Neurosurgery, 2007, 106(1 Suppl): 70

    Google Scholar 

  10. Ghannaee A M, Fakharian E, Sarbandi F. Ancient legacy of cranial surgery. Archives of Trauma Research, 2012, 1(2): 72–74

    Article  Google Scholar 

  11. Erdal Y S, Erdal Ö D. A review of trepanations in Anatolia with new cases. International Journal of Osteoarchaeology, 2011, 21 (5): 505–534

    Article  Google Scholar 

  12. Aciduman A, Belen D. The earliest document regarding the history of cranioplasty from the Ottoman era. Surgical Neurology, 2007, 68(3): 349–352

    Article  Google Scholar 

  13. Missios S. Hippocrates, Galen, and the uses of trepanation in the ancient classical world. Neurosurgical Focus, 2007, 23(1): 1–9

    Article  Google Scholar 

  14. Shah A M, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurgical Focus, 2014, 36(4): E19

    Article  Google Scholar 

  15. Spetzger U, Vougioukas V, Schipper J. Materials and techniques for osseous skull reconstruction. Minimally Invasive Therapy & Allied Technologies, 2010, 19(2): 110–121

    Article  Google Scholar 

  16. Aydin S, Kucukyuruk B, Abuzayed B, et al. Cranioplasty: Review of materials and techniques. Journal of Neurosciences in Rural Practice, 2011, 2(2): 162–167

    Article  Google Scholar 

  17. Prolo D J, Burres K P, McLaughlin W T, et al. Autogenous skull cranioplasty: fresh and preserved (frozen), with consideration of the cellular response. Neurosurgery, 1979, 4(1): 18–29

    Article  Google Scholar 

  18. Viterbo F, Palhares A, Modenese E. Cranioplasty: the autograft option. The Journal of Craniofacial Surgery, 1995, 6(1): 80–82

    Article  Google Scholar 

  19. Worm P V, Ferreira N P, Faria M B, et al. Comparative study between cortical bone graft versus bone dust for reconstruction of cranial burr holes. Surgical Neurology International, 2010, 1(1): 91

    Article  Google Scholar 

  20. Greene A K, Mulliken J B, Proctor M R, et al. Pediatric cranioplasty using particulate calvarial bone graft. Plastic and Reconstructive Surgery, 2008, 122(2): 563–571

    Article  Google Scholar 

  21. Matsumoto K, Kohmura E, Kato A, et al. Restoration of small bone defects at craniotomy using autologous bone dust and fibrin glue. Surgical Neurology, 1998, 50(4): 344–346

    Article  Google Scholar 

  22. Cokluk C, Senel A, Iyigün O, et al. Reconstruction of burr hole by using autologous button-shaped graft harvested from inner table of craniotomy flap: technique and clinical result. Minimally Invasive Neurosurgery, 2003, 46(6): 372–373

    Article  Google Scholar 

  23. Boström S, Kourtopoulos H, Nilsson I. Reconstruction of craniotomy burr-holes with autologous bone blugs made by a new hole-saw. Acta Neurochirurgica, 1990, 105(3–4): 132–134

    Article  Google Scholar 

  24. Beekmans S J, Don Griot J P, Mulder J W. Split rib cranioplasty for aplasia cutis congenita and traumatic skull defects: more than 30 years of follow-up. The Journal of Craniofacial Surgery, 2007, 18(3): 594–597

    Article  Google Scholar 

  25. Taggard D A, Menezes A H. Successful use of rib grafts for cranioplasty in children. Pediatric Neurosurgery, 2001, 34(3): 149–155

    Article  Google Scholar 

  26. Munro I R, Guyuron B. Split-rib cranioplasty. Annals of Plastic Surgery, 1981, 7(5): 341–346

    Article  Google Scholar 

  27. Rosenthal A H, Buchman S R. Volume maintenance of inlay bone grafts in the craniofacial skeleton. Plastic and Reconstructive Surgery, 2003, 112(3): 802–811

    Article  Google Scholar 

  28. Lee J C, Kleiber G M, Pelletier A T, et al. Autologous immediate cranioplasty with vascularized bone in high-risk composite cranial defects. Plastic and Reconstructive Surgery, 2013, 132(4): 967–975

    Article  Google Scholar 

  29. Tubbs R S, Loukas M, Shoja M M, et al. Use of autologous scapula for cranioplasty: cadaveric feasibility study. Child’s Nervous System, 2008, 24(8): 955–959

    Article  Google Scholar 

  30. Woodroffe H L W. The reparation of cranial defects by means of cartilaginous grafts. British Journal of Surgery, 1917, 5(17): 42–52

    Article  Google Scholar 

  31. Munroe A R. The operation of cartilage-cranioplasty. Canadian Medical Association Journal, 1924, 14(1): 47–49

    Google Scholar 

  32. Feroze A H, Walmsley G G, Choudhri O, et al. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. Journal of Neurosurgery, 2015 (in press)

    Google Scholar 

  33. Grant F C, Norcross N C. Repair of cranial defects by cranioplasty. Annals of Surgery, 1939, 110(4): 488–512

    Article  Google Scholar 

  34. Prolo D J, Gutierrez R V, DeVine J S, et al. Clinical utility of allogeneic skull discs in human craniotomy. Neurosurgery, 1984, 14(2): 183–186

    Article  Google Scholar 

  35. Cornioly C E. A propos de cranioplastie. Revue Medicale de la Suisse Romande, 1929, 49: 677–693

    Google Scholar 

  36. Woodhall B, Spurling R G. Tantalum cranioplasty for war wounds of the skull. Annals of Surgery, 1945, 121(5): 649–668

    Article  Google Scholar 

  37. Bonfield C M, Kumar A R, Gerszten P C. The history of military cranioplasty. Neurosurgical Focus, 2014, 36(4): E18

    Article  Google Scholar 

  38. Flanigan P, Kshettry V R, Benzel E C. World War II, tantalum, and the evolution of modern cranioplasty technique. Neurosurgical Focus, 2014, 36(4): E22

    Article  Google Scholar 

  39. Murtagh F, Scott M, Wycis H T. Stainless steel cranioplasty. American Journal of Surgery, 1956, 92(3): 393–402

    Article  Google Scholar 

  40. Boldrey E. Stainless steel wire-mesh in the repair of small cranial defects. Annals of Surgery, 1945, 121(6): 821–825

    Article  Google Scholar 

  41. Simpson D. Titanium in cranioplasty. Journal of Neurosurgery, 1965, 22(3): 292–293

    Article  Google Scholar 

  42. Gordon D S, Blair G A. Titanium cranioplasty. British Medical Journal, 1974, 2(5917): 478–481

    Article  Google Scholar 

  43. Cabraja M, Klein M, Lehmann T N. Long-term results following titanium cranioplasty of large skull defects. Neurosurgical Focus, 2009, 26(6): E10

    Article  Google Scholar 

  44. Marbacher S, Andres R H, Fathi A R, et al. Primary reconstruction of open depressed skull fractures with titanium mesh. The Journal of Craniofacial Surgery, 2008, 19(2): 490–495

    Article  Google Scholar 

  45. Wind J J, Ohaegbulam C, Iwamoto F M, et al. Immediate titanium mesh cranioplasty for treatment of postcraniotomy infections. World Neurosurgery, 2013, 79(1): 207.e11–207.e13

    Article  Google Scholar 

  46. Sunderland I R, Edwards G, Mainprize J, et al. A technique for intraoperative creation of patient-specific titanium mesh implants. Plast Surg (Oakv), 2015, 23(2): 95–99

    Google Scholar 

  47. Lau D, McDermott MW. A method for combining thin and thick malleable titanium mesh in the repair of cranial defects. Cureus, 2015, 7(5): e267

    Google Scholar 

  48. Hill C S, Luoma AMV, Wilson S R, et al. Titanium cranioplasty and the prediction of complications. British Journal of Neurosurgery, 2012, 26(6): 832–837

    Article  Google Scholar 

  49. Mukherjee S, Thakur B, Haq I, et al. Complications of titanium cranioplasty — a retrospective analysis of 174 patients. Acta Neurochirurgica, 2014, 156(5): 989–998

    Article  Google Scholar 

  50. Williams L R, Fan K F, Bentley R P. Custom-made titanium cranioplasty: early and late complications of 151 cranioplasties and review of the literature. International Journal of Oral and Maxillofacial Surgery, 2015, 44(5): 599–608

    Article  Google Scholar 

  51. Black S P. Reconstruction of the supraorbital ridge using aluminum. Surgical Neurology, 1978, 9(2): 121–128

    Google Scholar 

  52. Black S P W, Kam C C M, Sights W P. Aluminum cranioplasty. Journal of Neurosurgery, 1968, 29(5): 562–564

    Article  Google Scholar 

  53. Gage E L. Vitallium cranioplasty. The West Virginia Medical Journal, 1971, 67(11): 325–335

    Google Scholar 

  54. Kobayashi S, Hara H, Okudera H, et al. Usefulness of ceramic implants in neurosurgery. Neurosurgery, 1987, 21(5): 751–755

    Article  Google Scholar 

  55. Shirai T, Tsuchiya H, Terauchi R, et al. Treatment of a simple bone cyst using a cannulated hydroxyapatite pin. Medicine, 2015, 94(25): e1027

    Article  Google Scholar 

  56. Yoshikawa H, Tamai N, Murase T, et al. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. Journal of the Royal Society Interface, 2009, 6(Suppl 3): S341–S348

    Article  Google Scholar 

  57. Guo W G, Qiu Z Y, Cui H, et al. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics. Frontiers of Materials Science, 2013, 7(2): 190–195

    Article  Google Scholar 

  58. Pompili A, Caroli F, Carpanese L, et al. Cranioplasty performed with a new osteoconductive osteoinducing hydroxyapatitederived material. Journal of Neurosurgery, 1998, 89(2): 236–242

    Article  Google Scholar 

  59. Zide M F, Kent J N, Machado L. Hydroxylapatite cranioplasty directly over dura. Journal of Oral and Maxillofacial Surgery, 1987, 45(6): 481–486

    Article  Google Scholar 

  60. Waite P D, Morawetz R B, Zeiger H E, et al. Reconstruction of cranial defects with porous hydroxylapatite blocks. Neurosurgery, 1989, 25(2): 214–217

    Article  Google Scholar 

  61. Yamashima T. Cranioplasty with hydroxylapatite ceramic plates that can easily be trimmed during surgery. Acta Neurochirurgica, 1989, 96(3–4): 149–153

    Article  Google Scholar 

  62. Staffa G, Nataloni A, Compagnone C, et al. Custom made cranioplasty prostheses in porous hydroxyapatite using 3D design techniques: 7 years experience in 25 patients. Acta Neurochirurgica, 2007, 149(2): 161–170

    Article  Google Scholar 

  63. Staffa G, Barbanera A, Faiola A, et al. Custom made bioceramic implants in complex and large cranial reconstruction: a two-year follow-up. Journal of Cranio-Maxillo-Facial Surgery, 2012, 40 (3): e65–e70

    Article  Google Scholar 

  64. Stefini R, Zanotti B, Nataloni A, et al. The efficacy of custommade porous hydroxyapatite prostheses for cranioplasty: evaluation of postmarketing data on 2697 patients. Journal of Applied Biomaterials & Functional Materials, 2015, 13(2): e136–e144

    Article  Google Scholar 

  65. Yamashima T. Modern cranioplasty with hydroxylapatite ceramic granules, buttons, and plates. Neurosurgery, 1993, 33 (5): 939–940

    Article  Google Scholar 

  66. Marbacher S, Andereggen L, Erhardt S, et al. Intraoperative template-molded bone flap reconstruction for patient-specific cranioplasty. Neurosurgical Review, 2012, 35(4): 527–535

    Article  Google Scholar 

  67. Fischer C M, Burkhardt J K, Sarnthein J, et al. Aesthetic outcome in patients after polymethyl-methacrylate (PMMA) cranioplasty–a questionnaire-based single-centre study. Neurological Research, 2012, 34(3): 281–285

    Google Scholar 

  68. Ronderos J F, Wiles D A, Ragan F A, et al. Cranioplasty using gentamicin-loaded acrylic cement: a test of neurotoxicity. Surgical Neurology, 1992, 37(5): 356–360

    Article  Google Scholar 

  69. Pochon J P, Klöti J. Cranioplasty for acquired skull defects in children — a comparison between autologous material and methylmethacrylate 1974–1990. European Journal of Pediatric Surgery, 1991, 1(4): 199–201

    Article  Google Scholar 

  70. Caro-Osorio E, Garza-Ramos R D, Martínez-Sánchez S R, et al. Cranioplasty with polymethylmethacrylate prostheses fabricated by hand using original bone flaps: Technical note and surgical outcomes. Surgical Neurology International, 2013, 4(1): 136

    Article  Google Scholar 

  71. Gladstone H B, McDermott M W, Cooke D D. Implants for cranioplasty. Otolaryngologic Clinics of North America, 1995, 28(2): 381–400

    Google Scholar 

  72. Lara W C, Schweitzer J, Lewis R P, et al. Technical considerations in the use of polymethylmethacrylate in cranioplasty. Journal of Long-Term Effects of Medical Implants, 1998, 8(1): 43–53

    Google Scholar 

  73. Huang G J, Zhong S, Susarla S M, et al. Craniofacial reconstruction with poly(methyl methacrylate) customized cranial implants. The Journal of Craniofacial Surgery, 2015, 26 (1): 64–70

    Article  Google Scholar 

  74. Rotaru H, Stan H, Florian I S, et al. Cranioplasty with custommade implants: analyzing the cases of 10 patients. Journal of Oral and Maxillofacial Surgery, 2012, 70(2): e169–e176

    Article  Google Scholar 

  75. Fathi A R, Marbacher S, Lukes A. Cost-effective patient-specific intraoperative molded cranioplasty. The Journal of Craniofacial Surgery, 2008, 19(3): 777–781

    Article  Google Scholar 

  76. Jaberi J, Gambrell K, Tiwana P, et al. Long-term clinical outcome analysis of poly-methyl-methacrylate cranioplasty for large skull defects. Journal of Oral and Maxillofacial Surgery, 2013, 71(2): e81–e88

    Article  Google Scholar 

  77. Moreira-Gonzalez A, Jackson I T, Miyawaki T, et al. Clinical outcome in cranioplasty: critical review in long-term follow-up. The Journal of Craniofacial Surgery, 2003, 14(2): 144–153

    Article  Google Scholar 

  78. Al-Tamimi Y Z, Sinha P, Trivedi M, et al. Comparison of acrylic and titanium cranioplasty. British Journal of Neurosurgery, 2012, 26(4): 510–513

    Article  Google Scholar 

  79. Pikis S, Goldstein J, Spektor S. Potential neurotoxic effects of polymethylmethacrylate during cranioplasty. Journal of Clinical Neuroscience, 2015, 22(1): 139–143

    Article  Google Scholar 

  80. Wu J, Xu S, Qiu Z, et al. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation. Journal of Biomaterials Applications, 2015, doi: 10.1177/0885328215582112

    Google Scholar 

  81. Jiang H J, Xu J, Qiu Z Y, et al. Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen. Materials, 2015, 8(5): 2616–2634

    Article  Google Scholar 

  82. Kuemmerle J M, Oberle A, Oechslin C, et al. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty–an experimental study in sheep. Journal of Cranio-Maxillo-Facial Surgery, 2005, 33(1): 37–44

    Article  Google Scholar 

  83. Pang D, Tse H H, Zwienenberg-Lee M, et al. The combined use of hydroxyapatite and bioresorbable plates to repair cranial defects in children. Journal of Neurosurgery, 2005, 102(1 Suppl): 36–43

    Google Scholar 

  84. Matic D B, Manson P N. Biomechanical analysis of hydroxyapatite cement cranioplasty. Journal of Craniofacial Surgery, 2004, 15(3): 415–422

    Article  Google Scholar 

  85. Zins J E, Langevin C J, Nasir S. Controversies in skull reconstruction. The Journal of Craniofacial Surgery, 2010, 21 (6): 1755–1760

    Article  Google Scholar 

  86. Afifi A M, Gordon C R, Pryor L S, et al. Calcium phosphate cements in skull reconstruction: a meta-analysis. Plastic and Reconstructive Surgery, 2010, 126(4): 1300–1309

    Article  Google Scholar 

  87. Busch E, Bing J, Hansen E H. Gelatine and polythene film as dura substitutes and polythene plates as bone substitute in skull defects. Acta Chirurgica Scandinavica, 1949, 97(5): 410–416

    Google Scholar 

  88. Liu J K, Gottfried O N, Cole C D, et al. Porous polyethylene implant for cranioplasty and skull base reconstruction. Neurosurgical Focus, 2004, 16(3): 1

    Article  Google Scholar 

  89. Lin A Y, Kinsella C R, Rottgers S A, et al. Custom porous polyethylene implants for large-scale pediatric skull reconstruction: early outcomes. The Journal of Craniofacial Surgery, 2012, 23(1): 67–70

    Article  Google Scholar 

  90. Wang J C, Wei L, Xu J, et al. Clinical outcome of cranioplasty with high-density porous polyethylene. The Journal of Craniofacial Surgery, 2012, 23(5): 1404–1406

    Article  Google Scholar 

  91. Wang J C, Wang S Y, Gui L, et al. Porous polyethylene combined with split calvarial bone graft to cover complex calvarial defect. The Journal of Craniofacial Surgery, 2012, 23 (6): 1802–1804

    Article  Google Scholar 

  92. Hanasono M M, Goel N, DeMonte F. Calvarial reconstruction with polyetheretherketone implants. Annals of Plastic Surgery 2009, 62(6): 653–655

    Article  Google Scholar 

  93. Rosenthal G, Ng I, Moscovici S, et al. Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery, 2014, 75(5): 523–529

    Article  Google Scholar 

  94. Rammos C K, Cayci C, Castro-Garcia J A, et al. Patient-specific polyetheretherketone implants for repair of craniofacial defects. The Journal of Craniofacial Surgery, 2015, 26(3): 631–633

    Article  Google Scholar 

  95. Lethaus B, Safi Y, ter Laak-Poort M, et al. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. Journal of Neurotrauma, 2012, 29(6): 1077–1083

    Article  Google Scholar 

  96. Alonso-Rodriguez E, Cebrián J L, Nieto M J, et al. Polyetheretherketone custom-made implants for craniofacial defects: Report of 14 cases and review of the literature. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43(7): 1232–1238

    Article  Google Scholar 

  97. Thien A, King N K, Ang B T, et al. Comparison of polyetheretherketone and titanium cranioplasty after decompressive craniectomy. World Neurosurgery, 2015, 83(2): 176–180

    Article  Google Scholar 

  98. Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports, 2007, 57(1–6): 1–27

    Article  Google Scholar 

  99. Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB Journal, 1992, 6(3): 879–885

    Google Scholar 

  100. Olszta M J, Cheng X, Jee S S, et al. Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 2007, 58(3–5): 77–116

    Article  Google Scholar 

  101. Landis W J, Silver F H. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells, Tissues, Organs, 2009, 189(1–4): 20–24

    Article  Google Scholar 

  102. Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nanofibrils in mineralized collagen. Chemistry of Materials, 2003, 15 (16): 3221–3226

    Article  Google Scholar 

  103. Wang R Z, Cui F Z, Lu H B, et al. Synthesis of nanophase hydroxyapatite/collagen composite. Journal of Materials Science Letters, 1995, 14(7): 490–492

    Article  Google Scholar 

  104. Du C, Cui F Z, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Materials Research, 2000, 50(4): 518–527

    Article  Google Scholar 

  105. Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705–1711

    Article  Google Scholar 

  106. Constantz B R, Gunasekaran S. Mineralized collagen. US Patent, 5 231 169, 1993-07-27

    Google Scholar 

  107. Bradt J H, Mertig M, Teresiak A, et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chemistry of Materials, 1999, 11(10): 2694–2701

    Article  Google Scholar 

  108. Qiu Z Y, Tao C S, Cui H, et al. High-strength mineralized collagen artificial bone. Frontiers of Materials Science, 2014, 8 (1): 53–62

    Article  Google Scholar 

  109. Kou J M, Fu T Y, Jia X J, et al. Clinical observations on repair of non-infected bone nonunion by using mineralized collagen graft. Journal of Biomaterials and Tissue Engineering, 2014, 4(12): 1107–1112

    Article  Google Scholar 

  110. Lian K, Lu H, Guo X, et al. The mineralized collagen for the reconstruction of intra-articular calcaneal fractures with trabecular defects. Biomatter, 2013, 3(4): e27250

    Article  Google Scholar 

  111. Yu X, Xu L, Cui F Z, et al. Clinical evaluation of mineralized collagen as a bone graft substitute for anterior cervical intersomatic fusion. Journal of Biomaterials and Tissue Engineering, 2012, 2(2): 170–176

    Article  Google Scholar 

  112. Hvistendahl M. China’s push in tissue engineering. Science, 2012, 338(6109): 900–902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Zhai Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Qiu, ZY. & Cui, FZ. Biomaterials for reconstruction of cranial defects. Front. Mater. Sci. 9, 346–354 (2015). https://doi.org/10.1007/s11706-015-0312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-015-0312-x

Keywords

Navigation