Skip to main content
Log in

Circular dichroism of graphene oxide: the chiral structure model

  • Communication
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

We have observed the circular dichroism signal of dilute graphene oxide (GO), then systematically investigated the chirality of GO and established a probable chiral unit model. This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hummers W S, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339

    Article  CAS  Google Scholar 

  2. Gao W, Alemany L B, Ci L J, et al. New insights into the structure and reduction of graphite oxide. Nature Chemistry, 2009, 1(5): 403–408

    Article  CAS  Google Scholar 

  3. Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8): 4806–4814

    Article  CAS  Google Scholar 

  4. Kim J, Cote L J, Huang J X. Two dimensional soft material: new faces of graphene oxide. Accounts of Chemical Research, 2012, 45(8): 1356–1364

    Article  CAS  Google Scholar 

  5. Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008, 3(2): 101–105

    Article  CAS  Google Scholar 

  6. Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

    Article  CAS  Google Scholar 

  7. Wei Z Q, Wang D B, Kim S, et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science, 2010, 328(5984): 1373–1376

    Article  CAS  Google Scholar 

  8. Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper. Nature, 2007, 448(7152): 457–460

    Article  CAS  Google Scholar 

  9. Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39(1): 228–240

    Article  CAS  Google Scholar 

  10. Kim J, Cote L J, Kim F, et al. Graphene oxide sheets at interfaces. Journal of the American Chemical Society, 2010, 132(23): 8180–8186

    Article  CAS  Google Scholar 

  11. Hamley I W. Introduction to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals. New York: Wiley, 2000

    Google Scholar 

  12. Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited. Journal of Physical Chemistry B, 1998, 102(23): 4477–4482

    Article  CAS  Google Scholar 

  13. Szabó T, Berkesi O, Forgó P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials, 2006, 18(11): 2740–2749

    Article  Google Scholar 

  14. Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science, 2008, 321(5897): 1815–1817

    Article  CAS  Google Scholar 

  15. Casabianca L B, Shaibat M A, Cai W W, et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. Journal of the American Chemical Society, 2010, 132(16): 5672–5676

    Article  CAS  Google Scholar 

  16. Erickson K, Erni R, Lee Z, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 2010, 22(40): 4467–4472

    Article  CAS  Google Scholar 

  17. Johari P, Shenoy V B. Modulating optical properties of graphene oxide: role of prominent functional groups. ACS Nano, 2011, 5(9): 7640–7647

    Article  CAS  Google Scholar 

  18. Hossain M Z, Johns J E, Bevan K H, et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nature Chemistry, 2012, 4(4): 305–309

    Article  CAS  Google Scholar 

  19. Wei W L, Qu K G, Ren J S, et al. Chiral detection using reusable fluorescent amylose-functionalized graphene. Chemical Science, 2011, 2(10): 2050–2056

    Article  CAS  Google Scholar 

  20. Fan Z, Govorov A O. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Letters, 2012, 12(6): 3283–3289

    Article  CAS  Google Scholar 

  21. Greenfield N J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nature Protocols, 2006, 1(6): 2527–2535

    Article  CAS  Google Scholar 

  22. Hazen R M, Sholl D S. Chiral selection on inorganic crystalline surfaces. Nature Materials, 2003, 2(6): 367–374

    Article  CAS  Google Scholar 

  23. Micali N, Engelkamp H, van Rhee P G, et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chemistry, 2012, 4(3): 201–207

    Article  CAS  Google Scholar 

  24. Xu Z, Gao C. Aqueous liquid crystals of graphene oxide. ACS Nano, 2011, 5(4): 2908–2915

    Article  CAS  Google Scholar 

  25. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nature Communications, 2011, 2: 571

    Article  Google Scholar 

  26. Zhu Y, James D K, Tour J M. New routes to graphene, graphene oxide and their related applications. Advanced Materials, 2012, 24(36): 4924–4955

    Article  CAS  Google Scholar 

  27. Paul D R. Marerials science. Creating new types of carbon-based membranes. Science, 2012, 335(6067): 413–414

    Article  CAS  Google Scholar 

  28. Yin H J, Tang H J, Wang D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano, 2012, 6(9): 8288–8297

    Article  CAS  Google Scholar 

  29. Dimiev A, Kosynkin D V, Alemany L B, et al. Pristine graphite oxide. Journal of the American Chemical Society, 2012, 134(5): 2815–2822

    Article  CAS  Google Scholar 

  30. Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2(12): 1015–1024

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Song.

Additional information

J.C. and H.J.Y. have made the same contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Yin, HJ. & Song, R. Circular dichroism of graphene oxide: the chiral structure model. Front. Mater. Sci. 7, 83–90 (2013). https://doi.org/10.1007/s11706-013-0192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-013-0192-x

Keywords

Navigation