Frontiers of Materials Science

, Volume 6, Issue 3, pp 236–249 | Cite as

Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites

  • Punuri Jayasekhar Babu
  • Sibyala Saranya
  • Pragya Sharma
  • Ranjan Tamuli
  • Utpal Bora
Research Article


Gold nanoparticles (AuNPs) were synthesized by sonication using ethanolic leaf extract of Andrographis paniculata. We investigated the optimum parameters for AuNP synthesis and functionalization with polycaprolactone-gelatin (PCL-GL) composites. The AuNPs were characterized with various biophysical techniques such as TEM, XRD, FT-IR and EDX spectroscopy. TEM images showed that nanoparticles were spherical in shape with a size range from 5 to 75 nm. EDX analysis revealed the presence of molecular oxygen and carbon on the surface of AuNPs. The synthesized AuNPs were tested for their effect on HeLa (human cervical cancer) and MCF-7 (human breast cancer) cell lines and found to be nontoxic and biocompatible, which are potential carriers for hydrophobic drugs.


sonocatalasis Andrographis paniculata functionalization crystal growth biomaterial PCL-GL composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Giljohann D A, Seferos D S, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294CrossRefGoogle Scholar
  2. [2]
    Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 2008, 60(11): 1307–1315CrossRefGoogle Scholar
  3. [3]
    Lewis L N. Chemical catalysis by colloids and clusters. Chemical Reviews, 1993, 93(8): 2693–2730CrossRefGoogle Scholar
  4. [4]
    Lee K-B, Kim E-Y, Mirkin C A, et al. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Letters, 2004, 4(10): 1869–1872CrossRefGoogle Scholar
  5. [5]
    Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60(11): 1289–1306CrossRefGoogle Scholar
  6. [6]
    Uboldi C, Bonacchi D, Lorenzi G, et al. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 2009, 6: 18 (12 pages)CrossRefGoogle Scholar
  7. [7]
    Narayanan K B, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 2011, 169(2): 59–79CrossRefGoogle Scholar
  8. [8]
    Siripong P, Kongkathip B, Preechanukool K, et al. Cytotoxic diterpenoid constituents from Andrographis paniculata Nees. leaves. Journal of the Science Society of Thailand, 1992, 18(4): 187–194CrossRefGoogle Scholar
  9. [9]
    Singha P K, Roy S, Dey S. Antimicrobial activity of Andrographis paniculata. Fitoterapia, 2003, 74(7–8): 692–694CrossRefGoogle Scholar
  10. [10]
    Dua V K, Ojha V P, Roy R, et al. Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. Journal of Ethnopharmacology, 2004, 95(2–3): 247–251CrossRefGoogle Scholar
  11. [11]
    Thisoda P, Rangkadilok N, Pholphana N, et al. Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. European Journal of Pharmacology, 2006, 553(1–3): 39–45CrossRefGoogle Scholar
  12. [12]
    Yang L, Wu D F, Luo K W, et al. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Letters, 2009, 276(2): 180–188CrossRefGoogle Scholar
  13. [13]
    Puri A, Saxena R, Saxena R P, et al. Immunostimulant agents from Andrographis paniculata. Journal of Natural Products, 1993, 56(7): 995–999CrossRefGoogle Scholar
  14. [14]
    Sheeja K, Kuttan G. Effect of Andrographis paniculata as an adjuvant in combined chemo-radio and whole body hyperthermia treatment — a preliminary study. Immunopharmacology and Immunotoxicology, 2008, 30(1): 181–194CrossRefGoogle Scholar
  15. [15]
    Madav S, Tandan S K, Lal J, et al. Anti-inflammatory activity of andrographolide. Fitoterapia, 1996, 67(5): 452–458Google Scholar
  16. [16]
    Chang R S, Yeung H W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antiviral Research, 1988, 9(3): 163–175CrossRefGoogle Scholar
  17. [17]
    Ahmad M, Asmawi M Z. Some pharmacological effects of aqueous extract of Andrographis paniculata Nees. In: Gan E K, ed. The International Conference on the Use of’ Traditional Medicine & Other Natural Products in Health Care (Abstract). Penang, Malaysia: School of Pharmaceutical Sciences, University of Science Malaysia, 1993Google Scholar
  18. [18]
    Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent Andrographolide. Journal of Health Science, 2008, 54(4): 370–381CrossRefGoogle Scholar
  19. [19]
    Kirtikar K R, Basu B D. Indian medicinal plants. Periodical Experts, 1975, 3: 1884–1886Google Scholar
  20. [20]
    Nazimudeen S K, Ramaswamy S, Kameswaran L. Effect of Andrographis paniculata on snake venom induced death and its mechanism. Indian Journal of Pharmaceutical Sciences, 1978, 40(4): 132–133Google Scholar
  21. [21]
    Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445CrossRefGoogle Scholar
  22. [22]
    Maisonhaute E, Prado C, White P C, et al. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: Shear stress in ultrasonic cleaning. Ultrasonics Sonochemistry, 2002, 9(6): 297–303CrossRefGoogle Scholar
  23. [23]
    Mason T J, Cobley A J, Graves J E, et al. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics Sonochemistry, 2011, 18(1): 226–230CrossRefGoogle Scholar
  24. [24]
    Nune S K, Chanda N, Shukla R, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry, 2009, 19(19): 2912–2920CrossRefGoogle Scholar
  25. [25]
    Mody V V, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2010, 2(4): 282–289CrossRefGoogle Scholar
  26. [26]
    Babu P J, Sharma P, Borthakur B B, et al. Synthesis of gold nanoparticles using Mentha arvensis leaf extract. International Journal of Green Nanotechnology: Physics and Chemistry, 2010, 2(2): 62–68CrossRefGoogle Scholar
  27. [27]
    Shankar S S, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004, 275(2): 496–502CrossRefGoogle Scholar
  28. [28]
    Kannan P, Abraham John S. Synthesis of mercaptothiadiazolefunctionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology, 2008, 19(8): 085602CrossRefGoogle Scholar
  29. [29]
    Hiremath J G, Devi V K. Preparation and in vitro characterization of poly(epsilon-caprolactone)-based tamoxifen citrate-loaded cylindrical subdermal implant for breast cancer. Asian Journal of Pharmaceutics, 2011, 5(1): 9–14CrossRefGoogle Scholar
  30. [30]
    Nagahama H, Maeda H, Kashiki T, et al. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers, 2009, 76(2): 255–260CrossRefGoogle Scholar
  31. [31]
    Babu P J, Sharma P, Kalita M C, et al. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract. Frontiers of Materials Science, 2011, 5(4): 379–387CrossRefGoogle Scholar
  32. [32]
    Shankar S S, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488CrossRefGoogle Scholar
  33. [33]
    Song J Y, Kim B S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 2009, 32(1): 79–84CrossRefGoogle Scholar
  34. [34]
    Shah Mohammadi M, Ahmed I, Marelli B, et al. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Acta Biomaterialia, 2010, 6(8): 3157–3168CrossRefGoogle Scholar
  35. [35]
    Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008, 29(34): 4532–4539CrossRefGoogle Scholar
  36. [36]
    Ki C S, Baek D H, Gang K D, et al. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 2005, 46(14): 5094–5102CrossRefGoogle Scholar
  37. [37]
    Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 1986, 38: 181–364CrossRefGoogle Scholar
  38. [38]
    Sahoo R, Sahoo S, Sahoo S, et al. Synthesis and characterization of polycaprolactone-gelatin nanocomposites for control release anticancer drug paclitaxel. European Journal of Scientific Research, 2011, 48(3): 527–537Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Punuri Jayasekhar Babu
    • 1
    • 2
  • Sibyala Saranya
    • 2
    • 3
  • Pragya Sharma
    • 2
  • Ranjan Tamuli
    • 2
  • Utpal Bora
    • 1
    • 2
  1. 1.Biomaterials and Tissue Engineering Laboratory, Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Biotech Hub, Centre for the EnvironmentIndian Institute of Technology GuwahatiGuwahatiIndia
  3. 3.Department of BiotechnologyD.R.W. College, Gudur, SPS NelloreAndhraIndia

Personalised recommendations