Skip to main content
Log in

Resistive switching effects in oxide sandwiched structures

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Resistive switching (RS) behaviors have attracted great interest due to their promising potential for the data storage. Among various materials, oxide-based devices appear to be more advantageous considering their handy fabrication and compatibility with CMOS technology, though the underlying mechanism is still controversial due to the diversity of RS behaviors. In this review, we focus on the oxide-based RS memories, in which the working mechanism can be understood basically according to a so-called filament model. The filaments formation/rupture processes, approaches developed to detect and characterize filaments, several effective attempts to improve the performances of RS and the quantum conductance behaviors in oxide-based resistive random access memory (RRAM) devices are addressed, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hickmott T W. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 1962, 33(9): 2669–2682

    Article  CAS  Google Scholar 

  2. Sutherland R R. A theory for negative resistance and memory effects in thin insulating films and its application to Au-ZnS-Au devices. Journal of Physics D: Applied Physics, 1971, 4(3): 468–479

    Article  CAS  Google Scholar 

  3. Hickmott T W. Potential distribution and negative resistance in thin oxide films. Journal of Applied Physics, 1964, 35(9): 2679–2689

    Article  CAS  Google Scholar 

  4. Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Applied Physics Letters, 2000, 76(19): 2749–2751

    Article  CAS  Google Scholar 

  5. Lai Y-S, Tu C-H, Kwong D-L, et al. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Applied Physics Letters, 2005, 87(12): 122101 (3 pages)

    Article  Google Scholar 

  6. Hu B, Zhuge F, Zhu X, et al. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant. Journal of Materials Chemistry, 2012, 22(2): 520–526

    Article  CAS  Google Scholar 

  7. Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system. Nano Letters, 2009, 9(2): 870–874

    Article  CAS  Google Scholar 

  8. Jo S H, Kim K H, Lu W. Programmable resistance switching in nanoscale two-terminal devices. Nano Letters, 2009, 9(1): 496–500

    Article  CAS  Google Scholar 

  9. Zhuge F, Dai W, He C L, et al. Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters, 2010, 96(16): 163505 (3 pages)

    Article  Google Scholar 

  10. He C L, Zhuge F, Zhou X F, et al. Nonvolatile resistive switching in graphene oxide thin films. Applied Physics Letters, 2009, 95(23): 232101 (3 pages)

    Article  Google Scholar 

  11. Jeong H Y, Kim J Y, Kim JW, et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Letters, 2010, 10(11): 4381–4386

    Article  CAS  Google Scholar 

  12. Lee M J, Han S, Jeon S H, et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Letters, 2009, 9(4): 1476–1481

    Article  CAS  Google Scholar 

  13. Oka K, Yanagida T, Nagashima K, et al. Nonvolatile bipolar resistive memory switching in single crystalline NiO hetero-structured nanowires. Journal of the American Chemical Society, 2009, 131(10): 3434–3435

    Article  CAS  Google Scholar 

  14. Yun J-B, Kim S, Seo S, et al. Random and localized resistive switching observation in Pt/NiO/Pt. physica status solidi (RRL) — Rapid Research Letters, 2007, 1(6): 280–282

    Article  CAS  Google Scholar 

  15. Guan W, Long S, Liu Q, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. Electron Device Letters, IEEE, 2008, 29(5): 434–437

    Article  CAS  Google Scholar 

  16. Li Y, Long S, Lv H, et al. Improvement of resistive switching characteristics in ZrO2 film by embedding a thin TiOx layer. Nanotechnology, 2011, 22(25): 254028

    Article  Google Scholar 

  17. Wang Y, Liu Q, Long S, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4): 045202

    Article  Google Scholar 

  18. Chan M Y, Zhang T, Ho V, et al. Resistive switching effects of HfO2 high-k dielectric. Microelectronic Engineering, 2008, 85(12): 2420–2424

    Article  CAS  Google Scholar 

  19. Lin K-L, Hou T-H, Shieh J, et al. Electrode dependence of filament formation in HfO2 resistive-switching memory. Journal of Applied Physics, 2011, 109(8): 084104 (7 pages)

    Article  Google Scholar 

  20. Li S-L, Gang J-L, Li J, et al. Reproducible low-voltage resistive switching in a low-initial-resistance Pr0.7Ca0.3MnO3 junction. Journal of Physics D: Applied Physics, 2008, 41(18): 185409

    Article  Google Scholar 

  21. Gang J-L, Li S-L, Liao Z-L, et al. Clockwise vs counter-clockwise I-V hysteresis of point-contact metal-tip/Pr0.7Ca0.3MnO3/Pt devices. Chinese Physics Letters, 2010, 27(2): 027301

    Article  Google Scholar 

  22. Yin K, Li M, Liu Y, et al. Resistance switching in polycrystalline BiFeO3 thin films. Applied Physics Letters, 2010, 97(4): 042101 (3 pages)

    Article  Google Scholar 

  23. Yang C H, Seidel J, Kim S Y, et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nature Materials, 2009, 8(6): 485–493

    Article  CAS  Google Scholar 

  24. Chen X, Wu G, Zhang H, et al. Nonvolatile bipolar resistance switching effects in multiferroic BiFeO3 thin films on LaNiO3-electrodized Si substrates. Applied Physics A: Materials Science & Processing, 2010, 100(4): 987–990

    Article  CAS  Google Scholar 

  25. Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials, 2006, 5(4): 312–320

    Article  CAS  Google Scholar 

  26. Ni M C, Guo S M, Tian H F, et al. Resistive switching effect in SrTiO3 − δ /Nb-doped SrTiO3 heterojunction. Applied Physics Letters, 2007, 91(18): 183502 (3 pages)

    Article  Google Scholar 

  27. Muenstermann R, Menke T, Dittmann R, et al. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Advanced Materials, 2010, 22(43): 4819–4822

    Article  CAS  Google Scholar 

  28. Garcia V, Fusil S, Bouzehouane K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460(7251): 81–84

    Article  CAS  Google Scholar 

  29. Jeong W C, Lee B I, Joo S K. Three level, six state multilevel magnetoresistive RAM(MRAM). Journal of Applied Physics, 1999, 85(8): 4782–4784

    Article  CAS  Google Scholar 

  30. Wuttig M. Phase-change materials: towards a universal memory? Nature Materials, 2005, 4(4): 265–266

    Article  CAS  Google Scholar 

  31. Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories — nanoionic mechanisms, prospects, and challenges. Advanced Materials, 2009, 21(25–26): 2632–2663

    Article  CAS  Google Scholar 

  32. Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010, 5(2): 148–153

    Article  CAS  Google Scholar 

  33. Sawa A, Fujii T, Kawasaki M, et al. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2004, 85(18): 4073–4075

    Article  CAS  Google Scholar 

  34. Dong C Y, Shang D S, Shi L, et al. Roles of silver oxide in the bipolar resistance switching devices with silver electrode. Applied Physics Letters, 2011, 98(7): 072107 (3 pages)

    Article  Google Scholar 

  35. Meijer G I, Staub U, Janousch M, et al. Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(15): 155102

    Article  Google Scholar 

  36. Maksymovych P, Jesse S, Yu P, et al. Polarization control of electron tunneling into ferroelectric surfaces. Science, 2009, 324(5933): 1421–1425

    Article  CAS  Google Scholar 

  37. Kim S, Jeong H Y, Choi S Y, et al. Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters, 2010, 97(3): 033508 (3 pages)

    Article  Google Scholar 

  38. Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5 − x /TaO2 − x bilayer structures. Nature Materials, 2011, 10(8): 625–630

    Article  CAS  Google Scholar 

  39. Schindler C, Meier M, Waser R, et al. Resistive switching in Ag-Ge-Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS’ 07, 2007, 82–85

  40. Guan W, Liu M, Long S, et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Applied Physics Letters, 2008, 93(22): 223506 (3 pages)

    Article  Google Scholar 

  41. Kim K M, Jeong D S, Hwang C S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011, 22(25): 254002

    Article  Google Scholar 

  42. Chang S H, Chae S C, Lee S B, et al. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Applied Physics Letters, 2008, 92(18): 183507 (3 pages)

    Article  Google Scholar 

  43. Larentis S, Cagli C, Nardi F, et al. Filament diffusion model for simulating reset and retention processes in RRAM. Microelectronic Engineering, 2011, 88(7): 1119–1123

    Article  CAS  Google Scholar 

  44. Waser R, Aono M. Nanoionics-based resistive switching memories. Nature Materials, 2007, 6(11): 833–840

    Article  CAS  Google Scholar 

  45. Zhu X, Zhuge F, Li M, et al. Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. Journal of Physics D: Applied Physics, 2011, 44(41): 415104

    Article  Google Scholar 

  46. Zuo Q, Long S, Liu Q, et al. Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. Journal of Applied Physics, 2009, 106(7): 073724 (5 pages)

    Article  Google Scholar 

  47. Sim H, Seong D-J, Chang M, et al. Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In: 21st Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006, 88–89

  48. Li M, Zhuge F, Zhu X, et al. Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology, 2010, 21(42): 425202

    Article  Google Scholar 

  49. Zhuge F, Hu B, He C, et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 2011, 49(12): 3796–3802

    Article  CAS  Google Scholar 

  50. Bid A, Bora A, Raychaudhuri A K. Temperature dependence of the resistance of metallic nanowires (diameter ⩾ 15 nm): Applicability of Bloch-Grüneisen theorem. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(3): 035426 (9 pages)

    Article  Google Scholar 

  51. Guo Y, Zhang Y F, Bao X Y, et al. Superconductivity modulated by quantum size effects. Science, 2004, 306(5703): 1915–1917

    Article  CAS  Google Scholar 

  52. Koch C C, Scarbrough J O, Kroeger D M. Effects of interstitial oxygen on the superconductivity of niobium. Physical Review B: Condensed Matter and Materials Physics, 1974, 9(3): 888–897

    Article  CAS  Google Scholar 

  53. Son J Y, Shin Y H. Direct observation of conducting filaments on resistive switching of NiO thin films. Applied Physics Letters, 2008, 92(22): 222106 (3 pages)

    Article  Google Scholar 

  54. Chae S C, Lee J S, Kim S, et al. Random circuit breaker network model for unipolar resistance switching. Advanced Materials, 2008, 20(6): 1154–1159

    Article  CAS  Google Scholar 

  55. Zhuge F, Peng S, He C, et al. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology, 2011, 22(27): 275204

    Article  Google Scholar 

  56. Lee M H, Hwang C S. Resistive switching memory: observations with scanning probe microscopy. Nanoscale, 2011, 3(2): 490–502

    Article  CAS  Google Scholar 

  57. Choi S J, Park G S, Kim K H, et al. In situ observation of voltageinduced multilevel resistive switching in solid electrolyte memory. Advanced Materials, 2011, 23(29): 3272–3277

    Article  CAS  Google Scholar 

  58. Cho B, Yun J M, Song S, et al. Direct observation of Ag filamentary paths in organic resistive memory devices. Advanced Functional Materials, 2011, 21(20): 3976–3981

    Article  CAS  Google Scholar 

  59. Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Letters, 2009, 9(4): 1636–1643

    Article  CAS  Google Scholar 

  60. Yao J, Sun Z, Zhong L, et al. Resistive switches and memories from silicon oxide. Nano Letters, 2010, 10(10): 4105–4110

    Article  CAS  Google Scholar 

  61. Sakamoto T, Lister K, Banno N, et al. Electronic transport in Ta2O5 resistive switch. Applied Physics Letters, 2007, 91(9): 092110 (3 pages)

    Article  Google Scholar 

  62. Park G S, Li X S, Kim D C, et al. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters, 2007, 91(22): 222103 (3 pages)

    Article  Google Scholar 

  63. Tsuruoka T, Terabe K, Hasegawa T, et al. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology, 2010, 21(42): 425205

    Article  CAS  Google Scholar 

  64. Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature, 2005, 433(7021): 47–50

    Article  CAS  Google Scholar 

  65. Guo X, Schindler C, Menzel S, et al. Understanding the switchingoff mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007, 91(13): 133513 (3 pages)

    Article  Google Scholar 

  66. Liu Q, Sun J, Lv H, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolytebased ReRAM. Advanced Materials, 2012, 24(14): 1844–1849

    Article  CAS  Google Scholar 

  67. Yang Y, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nature Communications, 2012, 3: 732

    Article  Google Scholar 

  68. Peng S, Zhuge F, Chen X, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters, 2012, 100(7): 072101 (4 pages)

    Article  Google Scholar 

  69. Liu Q, Long S, Lv H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10): 6162–6168

    Article  CAS  Google Scholar 

  70. Lee W, Jung H J, Lee M H, et al. Oxygen surface exchange at grain boundaries of oxide ion conductors. Advanced Functional Materials, 2012, 22(5): 965–971

    Article  CAS  Google Scholar 

  71. Park C, Jeon S H, Chae S C, et al. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures. Applied Physics Letters, 2008, 93(4): 042102 (3 pages)

    Article  Google Scholar 

  72. Zou C, Chen B, Zhu X-J, et al. Local leakage current behaviours of BiFeO3 films. Chinese Physics B, 2011, 20(11): 117701

    Article  Google Scholar 

  73. Park J-W, Park J-W, Jung K, et al. Influence of oxygen content on electrical properties of NiO films grown by rf reactive sputtering for resistive random-access memory applications. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2006, 24(5): 2205–2208

    Article  CAS  Google Scholar 

  74. Bae Y C, Lee A R, Kwak J S, et al. Dependence of resistive switching behaviors on oxygen content of the Pt/TiO2 − x /Pt matrix. Current Applied Physics, 2011, 11(2): e66–e69

    Article  Google Scholar 

  75. Zhang H, Liu L, Gao B, et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Applied Physics Letters, 2011, 98(4): 042105 (3 pages)

    Article  Google Scholar 

  76. Liu Q, Long S, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Electron Device Letters, IEEE, 2009, 30(12): 1335–1337

    Article  CAS  Google Scholar 

  77. Fang Z, Yu H Y, Liu WJ, et al. Temperature instability of resistive switching on HfOx-based RRAM devices. Electron Device Letters, IEEE, 2010, 31(5): 476–478

    Article  CAS  Google Scholar 

  78. Goux L, Czarnecki P, Chen Y Y, et al. Evidences of oxygenmediated resistive-switching mechanism in TiN&HfO2&Pt cells. Applied Physics Letters, 2010, 97(24): 243509 (3 pages)

    Article  Google Scholar 

  79. Tsuruoka T, Terabe K, Hasegawa T, et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Advanced Functional Materials, 2012, 22(1): 70–77

    Article  CAS  Google Scholar 

  80. Zhu X, Su W, Liu Y, et al. Observation of conductance quantization in oxide-based resistive switching memory. Advanced Materials, 2012, DOI: 10.1002/adma.201201506

  81. Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395(6704): 780–783

    Article  CAS  Google Scholar 

  82. Seo J W, Park J W, Lim K S, et al. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters, 2008, 93(22): 223505 (3 pages)

    Article  Google Scholar 

  83. Li C Z, He H X, Bogozi A, et al. Molecular detection based on conductance quantization of nanowires. Applied Physics Letters, 2000, 76(10): 1333–1335

    Article  CAS  Google Scholar 

  84. Shu C, Li C Z, He H X, et al. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Physical Review Letters, 2000, 84(22): 5196–5199

    Article  CAS  Google Scholar 

  85. Linn E, Rosezin R, Kügeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010, 9(5): 403–406

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, XJ., Shang, J. & Li, RW. Resistive switching effects in oxide sandwiched structures. Front. Mater. Sci. 6, 183–206 (2012). https://doi.org/10.1007/s11706-012-0170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-012-0170-8

Keywords

Navigation