Frontiers of Materials Science

, Volume 5, Issue 1, pp 1–24 | Cite as

Shaped gold and silver nanoparticles

Review Article

Abstract

Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

Keywords

shaped nanoparticles geometric symmetry internal crystalline structure multiple twins gold silver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition, 2005, 44(48): 7852–7872CrossRefGoogle Scholar
  2. [2]
    Lopez-Acevedo O, Kacprzak K A, Akola J, et al. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nature Chemistry, 2010, 2(4): 329-334CrossRefGoogle Scholar
  3. [3]
    Fendler J H. Chemical self-assembly for electronic applications. Chemistry of Materials, 2001, 13(10): 3196–3210CrossRefGoogle Scholar
  4. [4]
    Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193CrossRefGoogle Scholar
  5. [5]
    Maier S A, Brongersma M L, Kik P G, et al. Plasmonics — a route to nanoscale optical devices. Advanced Materials, 2001, 13(19): 1501–1505CrossRefGoogle Scholar
  6. [6]
    Kamat, P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 2002, 106(32): 7729–7744CrossRefGoogle Scholar
  7. [7]
    Murray C B, Sun S, Doyle H, et al. Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bulletin, 2001, 26(12): 985–991Google Scholar
  8. [8]
    Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106CrossRefGoogle Scholar
  9. [9]
    Dick, L A, McFarland A D, Haynes C L, et al. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B, 2001, 106(4): 853–860CrossRefGoogle Scholar
  10. [10]
    Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticleenhanced Raman spectroscopy. Nature, 2010, 464(7287): 392–395CrossRefGoogle Scholar
  11. [11]
    Panyala N R, Pena-Mendez E M, Havel J. Gold and nano-gold in medicine: overview, toxicology and perspectives. Journal of Applied Biomedicine, 2009, 7(2): 75–91Google Scholar
  12. [12]
    Giljohann D A, Seferos D S, Daniel L, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294Google Scholar
  13. [13]
    Brown C L, Bushell G, Whitehouse M W, et al. Nanogoldpharmaceutics (i) The use of colloidal gold to treat experimentally-induced arthritis in rat models; (ii) Characterization of the gold in Swarna bhasma, a microparticulate used in traditional Indian medicine. Gold Bulletin, 2007, 40(3): 245–250CrossRefGoogle Scholar
  14. [14]
    Xu R, Wang D, Zhang J, et al. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry — An Asian Journal, 2006, 1(6): 888–893CrossRefGoogle Scholar
  15. [15]
    Tian N, Zhou Z, Sun S, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735CrossRefGoogle Scholar
  16. [16]
    Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 2002, 107(3): 668–677CrossRefGoogle Scholar
  17. [17]
    Millstone J E, Métraux G S, Mirkin C A. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Advanced Functional Materials, 2006, 16(9): 1209–1214CrossRefGoogle Scholar
  18. [18]
    Metraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415CrossRefGoogle Scholar
  19. [19]
    Xue C, Mirkin C A. pH-switchable silver nanoprism growth pathways. Angewandte Chemie International Edition, 2007, 46(12): 2036–2038CrossRefGoogle Scholar
  20. [20]
    Shuford K L, Ratner M A, Schatz G C. Multipolar excitation in triangular nanoprisms. The Journal of Chemical Physics, 2005, 123(11): 114713 (9 pages)CrossRefGoogle Scholar
  21. [21]
    Liang H, Wang W, Huang Y, et al. Controlled synthesis of uniform silver nanospheres. The Journal of Physical Chemistry C, 2010, 114(16): 7427–7431CrossRefGoogle Scholar
  22. [22]
    Sun Y G, Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst, 2003, 128(6): 686–691CrossRefGoogle Scholar
  23. [23]
    Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209–217CrossRefGoogle Scholar
  24. [24]
    Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103CrossRefGoogle Scholar
  25. [25]
    Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325CrossRefGoogle Scholar
  26. [26]
    Sau T K, Rogach A L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials, 2010, 22(16): 1781–1804CrossRefGoogle Scholar
  27. [27]
    Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37(9): 1783–1791CrossRefGoogle Scholar
  28. [28]
    Millstone J E, Hurst S J, Metraux G S, et al. Colloidal gold and silver triangular nanoprisms. Small, 2009, 5(6): 646–664CrossRefGoogle Scholar
  29. [29]
    Hao E, Schatz G C, Electromagnetic fields around silver nanoparticles and dimers. The Journal of Chemical Physics, 2004, 120(1): 357–366CrossRefGoogle Scholar
  30. [30]
    Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropic metal nanoparticles. Journal of Fluorescence, 2004, 14(4): 331–341CrossRefGoogle Scholar
  31. [31]
    Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248CrossRefGoogle Scholar
  32. [32]
    Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006, 128(6): 2115–2120CrossRefGoogle Scholar
  33. [33]
    Ding H, Yong K-T, Roy I, et al. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. The Journal of Physical Chemistry C, 2007, 111(34): 12552–12557CrossRefGoogle Scholar
  34. [34]
    Oyelere A K, Chen P C, Huang X, et al. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry, 2007, 18(5): 1490–1497CrossRefGoogle Scholar
  35. [35]
    Oldenburg A L, Hansen M N, Zweifel D A, et al. Plasmonresonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Optical Express, 2006, 14(15): 6724–6738CrossRefGoogle Scholar
  36. [36]
    Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials, 2009, 21(48): 4880–4910CrossRefGoogle Scholar
  37. [37]
    Tian Y, Tatsuma T. Mechanisms and applications of plasmoninduced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637CrossRefGoogle Scholar
  38. [38]
    Qin P, Linder M, Brinck T, et al. High incident photon-to-current conversion efficiency of p-type dye-sensitized solar sells based on NiO and organic chromophores. Advanced Materials, 2009, 21(29): 2993–2996CrossRefGoogle Scholar
  39. [39]
    Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials, 2010, 9(3): 239–244Google Scholar
  40. [40]
    Atwater H A, Polman A. Plasmonics for improved photovoltaic devices. Nature Materials, 2010, 9(3): 205–213CrossRefGoogle Scholar
  41. [41]
    Kulkarni A P, Noone K M, Munechika K, et al. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Letters, 2010, 10(4): 1501–1505CrossRefGoogle Scholar
  42. [42]
    Dickson R M, Lyon L A. Unidirectional plasmon propagation in metallic nanowires. The Journal of Physical Chemistry B, 2000, 104(26): 6095–6098CrossRefGoogle Scholar
  43. [43]
    Sanders A W, Routenberg D A, Wiley B J, et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Letters, 2006, 6(8): 1822–1826CrossRefGoogle Scholar
  44. [44]
    Knight M W, Grady N K, Bardhan R, et al. Nanoparticlemediated coupling of light into a nanowire. Nano Letters, 2007, 7(8): 2346–2350CrossRefGoogle Scholar
  45. [45]
    Guo X, Qiu M, Bao J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Letters, 2009, 9(12): 4515–4519CrossRefGoogle Scholar
  46. [46]
    Akimov A V, Mukherjee A, Yu C L, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402–406CrossRefGoogle Scholar
  47. [47]
    Noginov M A, Zhu G, Mayy M, et al. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806 (4 pages)CrossRefGoogle Scholar
  48. [48]
    Yan R, Pausauskie P, Huang J, et al. Direct photonic-plasmonic coupling and routing in single nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21045–21050CrossRefGoogle Scholar
  49. [49]
    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179CrossRefGoogle Scholar
  50. [50]
    Zhang Q, Cobley C, Au L, et al. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Applied Materials & Interfaces, 2009, 1(9): 2044–2048CrossRefGoogle Scholar
  51. [51]
    Zeng J, Zheng Y, Rycenga M, et al. Controlling the shapes of silver nanocrystals with different capping agents. Journal of the American Chemical Society, 2010, 132(25): 8552–8553CrossRefGoogle Scholar
  52. [52]
    Kim F, Connor S, Song H, et al. Platonic gold nanocrystals. Angewandte Chemie International Edition, 2004, 43(28): 3673–3677CrossRefGoogle Scholar
  53. [53]
    Kundu S, Maheshwari V, Niu S, et al. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation. Nanotechnology, 2008, 19(6): 065604 (5 pages)CrossRefGoogle Scholar
  54. [54]
    Huang C-J, Wang Y-H, Chiu P-H, et al. Electrochemical synthesis of gold nanocubes. Materials Letters, 2006, 60(15): 1896–1900CrossRefGoogle Scholar
  55. [55]
    Zhang Q, Huang C Z, Ling J, et al. Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde. The Journal of Physical Chemistry B, 2008, 112(51): 16990–16994CrossRefGoogle Scholar
  56. [56]
    Zhu J J, Kan C X, Zhu X G G, et al. Synthesis of perfect silver nanocubes by a simple polyol process. Jouranl of Materials Research, 2007, 22(6): 1479–1485CrossRefGoogle Scholar
  57. [57]
    Habas S E, Lee H, Radmilovic V, et al. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature Materials, 2007, 6(9): 692–697CrossRefGoogle Scholar
  58. [58]
    Fan F R, Liu D Y, Wu Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society, 2008, 130(22): 6949–6951CrossRefGoogle Scholar
  59. [59]
    Li C C, Shuford K L, Chen M H, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano, 2008, 2(9): 1760–1769CrossRefGoogle Scholar
  60. [60]
    Li C C, Shuford K L, Park Q H, et al. High-yield synthesis of single-crystalline gold nano-octahedra. Angewandte Chemie International Edition, 2007, 46(18): 3264–3268CrossRefGoogle Scholar
  61. [61]
    Song S, Liu R, Zhang Y, et al. Colloidal noble-metal and bimetallic alloy nanocrystals: A general synthetic method and their catalytic hydrogenation properties. Chemistry–A European Journal, 2010, 16(21): 6251–6256CrossRefGoogle Scholar
  62. [62]
    Seo D, Park J C, Song H. Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. Journal of the American Chemical Society, 2006, 128(46): 14863–14870CrossRefGoogle Scholar
  63. [63]
    Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir, 2008, 24(18): 10407–10413CrossRefGoogle Scholar
  64. [64]
    Tsuji M, Ogino M, Matsuo R, et al. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Crystal Growth & Design 2010, 10(1): 296–301CrossRefGoogle Scholar
  65. [65]
    Zheng X L, Zhao X J, Guo D W, et al. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir, 2009, 25(6): 3802–3807CrossRefGoogle Scholar
  66. [66]
    Zhang W, Liu Y, Cao R, et al. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals. Journal of the American Chemical Society, 2008, 130(46): 15581–15588CrossRefGoogle Scholar
  67. [67]
    Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials, 2008, 20(16): 5186–5190CrossRefGoogle Scholar
  68. [68]
    Pastoriza-Santos I, Sanchez-Iglesias A, de Abajo F J G, et al. Environmental optical sensitivity of gold nanodecahedra. Advanced Functional Materials, 2007, 17(9): 1443–1450CrossRefGoogle Scholar
  69. [69]
    Murphy C J, Gole A M, Hunyadi S E, et al. One-dimensional colloidal gold and silver nanostructures. Inorganic Chemistry, 2006, 45(19): 7544–7554CrossRefGoogle Scholar
  70. [70]
    Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. The Journal of Physical Chemistry B, 2005, 109(29): 13857–13870CrossRefGoogle Scholar
  71. [71]
    Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters, 2003, 3(9): 1229–1233CrossRefGoogle Scholar
  72. [72]
    Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Letters, 2003, 3(7): 955–960CrossRefGoogle Scholar
  73. [73]
    Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letters, 2002, 2(2): 165–168CrossRefGoogle Scholar
  74. [74]
    Ni K, Chen L, Lu G X. Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction. Electrochemistry Communication, 2008, 10(7): 1027–1030CrossRefGoogle Scholar
  75. [75]
    N’Gom M, Ringnalda J, Mansfield J F, et al. Single particle plasmon spectroscopy of silver nanowires and gold nanorods. Nano Letters, 2008, 8(10): 3200–3204CrossRefGoogle Scholar
  76. [76]
    Tang X, Tsuji M, Jiang P, et al. Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 338(1–3): 33–39Google Scholar
  77. [77]
    Wiley B J, Wang Z, Wei J, et al. Synthesis and electrical characterization of silver nanobeams. Nano Letters, 2006, 6(10): 2273–2278CrossRefGoogle Scholar
  78. [78]
    Xue C, Metraux G S, Millstone J E, et al. Mechanistic study of photomediated triangular silver nanoprism growth. Journal of the American Chemical Society, 2008, 130(26): 8337–8344CrossRefGoogle Scholar
  79. [79]
    Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2002, 2(9): 1003–1007CrossRefGoogle Scholar
  80. [80]
    Chen S, Fan Z, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly. The Journal of Physical Chemistry B, 2002, 106(42): 10777–10781CrossRefGoogle Scholar
  81. [81]
    Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294(5548): 1901–1903CrossRefGoogle Scholar
  82. [82]
    Washio I, Xiong Y, Yin Y, et al. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials, 2006, 18(13): 1745–1749CrossRefGoogle Scholar
  83. [83]
    Xiong Y, Washio I, Chen J, et al. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 2006, 22(20): 8563–8570CrossRefGoogle Scholar
  84. [84]
    Lim B, Camargo P H C, Xia Y. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone). Langmuir, 2008, 24(18): 10437–10442CrossRefGoogle Scholar
  85. [85]
    Xiong Y J, Siekkinen A R, Wang J G, et al. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. Journal of Materials Chemistry, 2007, 17(25): 2600–2602CrossRefGoogle Scholar
  86. [86]
    Cao Z W, Fu H B, Kang L T, et al. Rapid room-temperature synthesis of silver nanoplates with tunable in-plane surface plasmon resonance from visible to near-IR. Journal of Materials Chemistry, 2008, 18(23): 2673–2678CrossRefGoogle Scholar
  87. [87]
    Zhao N, Wei Y, Sun N, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir, 2008, 24(3): 991–998CrossRefGoogle Scholar
  88. [88]
    Li L, Wang Z, Huang T, et al. Porous gold nanobelts templated by metal-surfactant complex nanobelts. Langmuir, 2010, 26(14): 12330–12335CrossRefGoogle Scholar
  89. [89]
    Bai J, Qin Y, Jiang C, et al. Polymer-controlled synthesis of silver nanobelts and hierarchical nanocolumns. Chemistry of Materials, 2007, 19(14): 3367–3369CrossRefGoogle Scholar
  90. [90]
    Singh A, Ghosh A. Stabilizing high-energy crystal structure in silver nanowires with underpotential electrochemistry. The Journal of Physical Chemistry C, 2008, 112(10): 3460–3463CrossRefGoogle Scholar
  91. [91]
    Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angewandte Chemie International Edition, 2005, 44(14): 2154–2157CrossRefGoogle Scholar
  92. [92]
    Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601CrossRefGoogle Scholar
  93. [93]
    Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Letters, 2004, 4(9): 1733–1739CrossRefGoogle Scholar
  94. [94]
    Yu D, Yam V W-W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the Amercian Chemical Society, 2004, 126(41): 13200–13201CrossRefGoogle Scholar
  95. [95]
    Skrabalak S E, Au L, Li X, et al. Facile synthesis of Ag nanocubes and Au nanocages. Nature Protocols, 2007, 2(9): 2182–2190CrossRefGoogle Scholar
  96. [96]
    Siekkinen A R, McLellan J M, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chemical Physics Letters, 2006, 432(4–6): 491–496CrossRefGoogle Scholar
  97. [97]
    Wiley B J, Chen Y C, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorice. Nano Letters, 2007, 7(4): 1032–1036CrossRefGoogle Scholar
  98. [98]
    Mulvihill M J, Ling X Y, Henzie J, et al. Anisotropic etching of silver nanoparticles for plasmonic structures capable of singleparticle SERS. Journal of the American Chemical Society, 2009, 132(1): 268–274CrossRefGoogle Scholar
  99. [99]
    Wu X, Redmond P L, Liu H, et al. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. Journal of the American Chemical Society, 2008, 130(29): 9500–9506CrossRefGoogle Scholar
  100. [100]
    Mackay A L. A dense non-crystalloraphic packing of equal spheres. Acta Crystallography, 1962, 15: 916–918CrossRefGoogle Scholar
  101. [101]
    Zhang Q, Xie J, Yang J, et al. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano, 2009, 3(1): 139–148CrossRefGoogle Scholar
  102. [102]
    Peng S, McMahon J M, Schatz G C, et al. Reversing the sizedependence of surface plasmon resonances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(33): 14530–14534CrossRefGoogle Scholar
  103. [103]
    Xu J, Li S, Weng J, et al. Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Advanced Functional Materials, 2008, 18(2): 277–284CrossRefGoogle Scholar
  104. [104]
    Lu X, Tuan H-Y, Korgel B A, et al. Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chemistry–A European Journal, 2008, 14(5): 1584–1591CrossRefGoogle Scholar
  105. [105]
    Yavuz M S, Li W, Xia Y. Facile synthesis of gold icosahedra in an aqueous solution by reacting HAuCl4 with N-vinyl pyrrolidone. Chemistry–A European Journal, 2009, 15(47): 13181–13187CrossRefGoogle Scholar
  106. [106]
    Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, et al. Synthesis and optical properties of gold nanodecahedra with size control. Advanced Materials, 2006, 18(19): 2529–2534CrossRefGoogle Scholar
  107. [107]
    Gao Y, Jiang P, Song L, et al.et al. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth, 2006, 289(1): 376–380CrossRefGoogle Scholar
  108. [108]
    Zheng X, Xu W, Corredor C, et al. Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. The Journal of Physical Chemistry C, 2007, 111(41): 14962–14967CrossRefGoogle Scholar
  109. [109]
    Stamplecoskie K G, Scaiano J C. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. Journal of the American Chemical Society, 2010, 132(6): 1825–1827CrossRefGoogle Scholar
  110. [110]
    Gao Y, Jiang P, Liu D F, et al. Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. The Journal of Physical Chemistry B, 2004, 108(34): 12877–12881CrossRefGoogle Scholar
  111. [111]
    Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications, 2001, (7): 617–618Google Scholar
  112. [112]
    Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82CrossRefGoogle Scholar
  113. [113]
    Lucas M, Leach A M, McDowell M T, et al. Plastic deformation of pentagonal silver nanowires: Comparison between AFM nanoindentation and atomistic simulations. Physical Reviews B, 2008, 77(24): 245420 (4 pages)CrossRefGoogle Scholar
  114. [114]
    Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005, 21(8): 3334–3337CrossRefGoogle Scholar
  115. [115]
    Zhang S, Jiang Z, Xie Z, et al. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism. The Journal of Physical Chemistry B, 2005, 109(19): 9416–9421CrossRefGoogle Scholar
  116. [116]
    Kim S H, Choi B S, Kang K, et al. Low temperature synthesis and growth mechanism of Ag nanowires. Journal of Alloys and Compounds, 2007, 433(1–2): 261–264CrossRefGoogle Scholar
  117. [117]
    Zheng X, Zhu L, Yan A, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. Journal of Colloid & Interface Science, 2003, 268(2): 357–361CrossRefGoogle Scholar
  118. [118]
    Zhou G, Lu M, Yang Z, et al. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach. Journal of Crystal Growth, 2006, 289(1): 255–259CrossRefGoogle Scholar
  119. [119]
    Pietrobon B, McEachran M, Kitaev V. Synthesis of sizecontrolled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano, 2009, 3(1): 21–26CrossRefGoogle Scholar
  120. [120]
    Seo D, Yoo C I, Jung J, et al. Ag-Au-Ag heterometallic nanords formed through directed anisotropic growth. Journal of the American Chemical Society, 2008, 130(10): 2940–2941CrossRefGoogle Scholar
  121. [121]
    Sun Y, Xia Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding polyol process. Advacned Materials, 2002, 14(11): 833–837CrossRefGoogle Scholar
  122. [122]
    Sun Y, Yin Y, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chemistry of Materials, 2002, 14(11): 4736–4745CrossRefGoogle Scholar
  123. [123]
    Jin R, Charles Cao Y, Hao E, et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490CrossRefGoogle Scholar
  124. [124]
    An J, Tang B: Ning X, et al. Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. The Journal of Physical Chemistry C, 2007, 111(49): 18055–18059CrossRefGoogle Scholar
  125. [125]
    Zhang Q, Ge J, Pham T, et al. Reconstruction of silver nanoplates by UV irradiation: Tailored optical properties and enhanced stability. Angewandte Chemie International Edition, 2009, 48(19): 3516–3519CrossRefGoogle Scholar
  126. [126]
    Maillard M, Giorgio S, Pileni M P. Silver nanodisks. Advanced Materials, 2002, 14(15): 1084–1086CrossRefGoogle Scholar
  127. [127]
    Yener D O, Sindel J, Randall C A, et al. Synthesis of nanosized silver platelets in octylamine-water bilayer systems. Langmuir, 2002, 18(22): 8692–8699CrossRefGoogle Scholar
  128. [128]
    Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF. Nano Letters, 2002, 2(8): 903–905CrossRefGoogle Scholar
  129. [129]
    Pastoriza-Santos I, Liz-Marzán L M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Advanced Functioanl Materials, 2009, 19(5): 679–688CrossRefGoogle Scholar
  130. [130]
    Malikova N, Pastoriza-Santos I, Schierhorn M, et al. Layer-bylayer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir, 2002, 18(9): 3694–3697CrossRefGoogle Scholar
  131. [131]
    Millstone J E, Park S, Shuford K L, et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. Journal of the American Chemical Society, 2005, 127(15): 5312–5313CrossRefGoogle Scholar
  132. [132]
    Shankar S S, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials, 2005, 17(3): 566–572CrossRefGoogle Scholar
  133. [133]
    Tsuji M, Hashimoto M, Nishizawa Y, et al. Microwave-assisted synthesis of metallic nanostructures in solution. Chemistry - A European Journal, 2005, 11(2): 440–452CrossRefGoogle Scholar
  134. [134]
    Li C, Cai W, Li Y, et al. Ultrasonically induced Au nanoprisms and their size manipulation based on aging. The Journal of Physical Chemistry B, 2006, 110(4): 1546–1552CrossRefGoogle Scholar
  135. [135]
    Sun Y, Mayers B, Xia Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Letters, 2003, 3(5): 675–679CrossRefGoogle Scholar
  136. [136]
    Zhang J, Liu H, Wang Z, et al. Synthesis of high purity Au nanobelts via the one-dimensional self-assembly of triangular Au nanoplates. Applied Physics Letters, 2007, 91(13): 133112 (3 pages)CrossRefGoogle Scholar
  137. [137]
    Zheng H, Smith R K, Jun Y-W, et al. Observation of single colloidal platinum nanocrystal growth trajectories. Science, 2009, 324(5932): 1309–1312CrossRefGoogle Scholar
  138. [138]
    Abécassis B, Testard F, Spalla O, et al. Probing in situ the nucleation and growth of gold nanoparticles by small-angle Xray scattering. Nano Letters, 2007, 7(6): 1723–1727CrossRefGoogle Scholar
  139. [139]
    Polte J, Erler R, Thunemann A F, et al. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano, 2010, 4(2): 1076–1082CrossRefGoogle Scholar
  140. [140]
    Chen C-H, Sarma L S, Chen J-M, et al. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. ACS Nano, 2007, 1(2): 114–125CrossRefGoogle Scholar
  141. [141]
    Harada M, Inada Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir, 2009, 25(11): 6049–6061CrossRefGoogle Scholar
  142. [142]
    Cheong S, Watt J, Ingham B, et al. In situ and ex situ studies of platinum nanocrystals: Growth and evolution in solution. Journal of the American Chemical Society, 2009, 131(40): 14590–14595CrossRefGoogle Scholar
  143. [143]
    Middelkoop V, Boldrin P, Peel M, et al. Imaging the inside of a continuous nanoceramic synthesizer under supercritical water conditions using high-energy synchrotron X-radiation. Chemistry of Materials, 2009, 21(12): 2430–2435CrossRefGoogle Scholar
  144. [144]
    Bremholm M, Felicissimo M, Iversen B B. Time-resolved in situ synchrotron X-ray study and large-scale production of magnetite nanoparticles in supercritical water. Angewandte Chemie International Edition, 2009, 48(26): 4788–4791CrossRefGoogle Scholar
  145. [145]
    Bremholm M, Becker-Christensen J, Iversen B B. High-pressure, high-temperature formation of phase-pure monoclinic zirconia nanocrystals studied by time-resolved in situ synchrotron X-ray diffraction. Advanced Materials, 2009, 21(35): 3572–3575CrossRefGoogle Scholar
  146. [146]
    Park S Y, Lytton-Jean A K R, Lee B, et al. DNA-programmable nanoparticle crystallization. Nature, 2008, 451(7178): 553–556CrossRefGoogle Scholar
  147. [147]
    Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439(7072): 55–59CrossRefGoogle Scholar
  148. [148]
    Li W Y, Camargo P H C, Au L, et al. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie International Edition, 2010, 49(1): 164–168Google Scholar
  149. [149]
    Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nature Nanotechnology, 2007, 2(7): 435–440CrossRefGoogle Scholar
  150. [150]
    Chak C-P, Xuan S, Mendes P M. Discrete functional gold nanoparticles: Hydrogen bond-assisted synthesis, magnetic purification, supramolecular dimer and trimer formation. ACS Nano, 2009, 3(8): 2129–2138CrossRefGoogle Scholar
  151. [151]
    Guerrero-Martínez A, Pérez-Juste J, Carbó-Argibay E. Geminisurfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angewandte Chemie International Edition, 2009, 48(50): 9484–9488CrossRefGoogle Scholar
  152. [152]
    Brousseau III L C, Novak J P, Marinakos S M, et al. Assembly of phenylacetylene-bridged gold nanocluster dimers and trimers. Advanced Materials, 1999, 11(6): 447–449CrossRefGoogle Scholar
  153. [153]
    Nykypanchuk D, Maye M M, van der Lelie D, et al. DNA-guided crystallization of colloidal nanoparticles. Nature, 2008, 451(7178): 549–552CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  2. 2.State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations