Skip to main content
Log in

A review on magnesium alloys as biodegradable materials

  • Review Article
  • Published:
Frontiers of Materials Science in China Aims and scope Submit manuscript

Abstract

Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728–1734

    Article  CAS  PubMed  Google Scholar 

  2. Saris N E L. Magnesium: an update on physiological, clinical and analytical aspects. Clinica Chimica Acta, 2000, 294(1–2): 1–26

    Article  CAS  Google Scholar 

  3. El-Rahman S S. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research, 2003, 47(3): 189–194

    Article  CAS  PubMed  Google Scholar 

  4. Hirano S, Suzuki K T. Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 1996, 104(Suppl 1): 85–95

    Article  CAS  PubMed  Google Scholar 

  5. Witte F, Hort N, Vogt C, et al. Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008, 12(5–6): 63–72

    Article  CAS  Google Scholar 

  6. http://www.magnesium-elektron.com

  7. Gu X, Zheng Y, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498

    Article  CAS  PubMed  Google Scholar 

  8. Xu L, Yu G, Zhang E, et al. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. Journal of Biomedical Materials Research Part A, 2007, 83A(3): 703–711

    Article  CAS  Google Scholar 

  9. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329–1344

    Article  CAS  PubMed  Google Scholar 

  10. Zhang S, Zhang X, Zhao C, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomaterialia, 2010, 6(2): 626–640

    Article  CAS  PubMed  Google Scholar 

  11. Ruedi T P, Murphy W M. AO Principle of Fracture Management. Thieme Medical Publishers, 2001

  12. Wang H, Estrin Y, Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Materials Letters, 2008, 62(16): 2476–2479

    Article  CAS  Google Scholar 

  13. Zartner P, Cesnjevar R, Singer H, et al. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheterization and Cardiovascular Interventions, 2005, 66(4): 590–594

    Article  PubMed  Google Scholar 

  14. Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. The Lancet, 2007, 369(9576): 1869–1875

    Article  CAS  Google Scholar 

  15. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013–1018

    Article  CAS  PubMed  Google Scholar 

  16. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563

    Article  CAS  PubMed  Google Scholar 

  17. Zeng R-C, Chen J, Dietzel W, et al. Electrochemical behavior of magnesium alloys in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2007, 17: s166–s170

    Article  CAS  Google Scholar 

  18. Yao Z, Li L, Jiang Z. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Applied Surface Science, 2009, 255(13–14): 6724–6728

    Article  CAS  ADS  Google Scholar 

  19. Kannan M B, Raman R K. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modifiedsimulated body fluid. Biomateirals, 2008, 29(15): 2306–2314

    Article  CAS  Google Scholar 

  20. Song G. Control of biodegradation of biocompatible magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701

    Article  CAS  ADS  Google Scholar 

  21. Xu L, Zhang E, Yin D, et al. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. Journal of Materials Science: Materials in Medicine, 2008, 19(3): 1017–1025

    Article  PubMed  Google Scholar 

  22. Zhang E, Yin D, Xu L, et al. Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application. Materials Science and Engineering C, 2009, 29(3): 987–993

    Article  CAS  ADS  Google Scholar 

  23. Zhang E, He W, Du H, et al. Microstructure, mechanical and corrosion properties of Mg-Zn-Y alloys with low Zn content. Materials Science and Engineering A, 2008, 488(1–2): 102–111

    Article  Google Scholar 

  24. Sigel H. Metal Ions in Biological System. New York: Marcel Dekker Inc., 1986

    Google Scholar 

  25. Seiler H G, Sigel H. Handbook on Toxicity of Inorganic Compounds. New York: Marcel Dekker Inc., 1988

    Google Scholar 

  26. Emley E F. Principles of Magnesium Technology. Oxford: Pergamon Press, 1966

    Google Scholar 

  27. Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 2004, 185(1): 92–98

    Article  CAS  MathSciNet  Google Scholar 

  28. Gu X N, Zheng W, Cheng Y, et al. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomaterialia, 2009, 5(7): 2790–2799

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X P, Zhao Z P, Wu F M, et al. Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution. Journal of Materials Science, 2007, 42(20): 8523–8528

    Article  CAS  ADS  Google Scholar 

  30. Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512–1523

    Article  CAS  PubMed  Google Scholar 

  31. Wang H X, Guan S K, Wang X, et al. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomaterialia, 2009

  32. Gu X N, Zheng Y F, Lan Q X, et al. Surface modification of Mg-1Ca alloy to slow down its biocorrosion by chitosan. Biomedical Materials, 2009, 4(4): 044109

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Gu X N, Zheng Y F, Zhong S P, et al. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 2010, 31(6): 1093–1103

    Article  CAS  PubMed  Google Scholar 

  34. Zberg B, Uggowitzer P J, Löffler J F. Mg-Zn-Ca glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, XN., Zheng, YF. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4, 111–115 (2010). https://doi.org/10.1007/s11706-010-0024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-010-0024-1

Keywords

Navigation