Diameters of single-walled carbon nanotubes (SWCNTs) and related nanochemistry and nanobiology

Abstract

We reviewed and examined recent progresses related to the nanochemistry and nanobiology of signal-walled carbon nanotubes (SWCNTs), focusing on the diameters of SWCNTs and how the diameters affect the interactions of SWCNT with protein and DNA, which underlay more complex biological responses. The diameters of SWCNTs are closely related to the electronic structure and surface chemistry of SWCNTs, and subsequently affect the interaction of SWCNTs with membrane, protein, and DNA. The surfaces of SWCNT with smaller diameters are more polar, and these with large diameters are more hydrophobic. The preference of SWCNT to interact with Trp/Phe/Met residues indicates it is possible that SWCNT may interfere with normal protein-protein interactions. SWCNT-DNA interactions often change DNA conformation. Besides the promising future of using SWCNTs as delivering nanomaterial, thermal therapy, and other biological applications, we should thoroughly examine the possible effects of carbon nanotube on interrupting normal protein-protein interaction network and other genetic effects at the cellular level.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 2005, 5(3): 161–171

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Hede S, Huilgol N. “Nano”: the new nemesis of cancer. Journal of Cancer Research and Therapeutics, 2006, 2(4): 186–195

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Portney N G, Ozkan M. Nano-oncology: drug delivery, imaging, and sensing. Analytical and Bioanalytical Chemistry, 2006, 384(3): 620–630

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Zhang Y, Yang M, Portney N G, et al. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomedical Microdevices, 2008, 10(2): 321–328

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Yang J, Lee C H, Ko H J, et al. Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angewandte Chemie International Edition English, 2007, 46(46): 8836–8839

    Article  CAS  Google Scholar 

  6. 6.

    Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem, 2008, 3(6): 940–945

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Vega-Villa K R, Takemoto J K, Yáñez J A, et al. Clinical toxicities of nanocarrier systems. Advanced Drug Delivery Reviews, 2008, 60(8): 929–938

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opinion on Drug Delivery, 2008, 5(3): 331–342

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Wang Y Y, Wang X, Wu B, et al. Dispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor. Sensors and Actuators B: Chemical, 2008, 130(2): 809–815

    Article  Google Scholar 

  10. 10.

    Tkac J, Whittaker J W, Ruzgas T. The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 2007, 22(8): 1820–1824

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Pope-Harman A, Cheng M M, Robertson F, et al. Biomedical nanotechnology for cancer. Medical Clinics of North America, 2007, 91(5): 899–927

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Peters R. Nanoscopic medicine: the next frontier. Small, 2006, 2(4): 452–456

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7(4): 1298–1314

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Ajayan P M, Colliex C, Lambert J M, et al. Growth of manganese filled carbon nanofibers in the vapor phase. Physical Review Letters, 1994, 72(11): 1722–1725

    Article  CAS  PubMed  ADS  Google Scholar 

  15. 15.

    Dravid V P, Lin X, Wang Y, et al. Buckytubes and derivatives: their growth and implications for buckyball formation. Science, 1993, 259(5101): 1601–1604

    Article  CAS  PubMed  ADS  Google Scholar 

  16. 16.

    Colbert D T, Zhang J, McClure S M, et al. Growth and sintering of fullerene nanotubes. Science, 1994, 266(5188): 1218–1222

    Article  CAS  PubMed  ADS  Google Scholar 

  17. 17.

    Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 1995, 99(27): 10694–10697

    Article  CAS  Google Scholar 

  18. 18.

    Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483–487

    Article  CAS  PubMed  ADS  Google Scholar 

  19. 19.

    Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283(5401): 512–514

    Article  CAS  PubMed  ADS  Google Scholar 

  20. 20.

    Li S H, Liu H, Li H F, et al. The controlled pattern growth of aligned carbon nanotubes. Synthetic Metals, 2003, 135–136(4): 815–816

    Article  Google Scholar 

  21. 21.

    Xu D S, Guo G, Gui L, et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Applied Physics Letters, 1999, 75(4): 481–483

    Article  CAS  ADS  Google Scholar 

  22. 22.

    Cheng H M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 1998, 289(5–6): 602–610

    Article  CAS  ADS  Google Scholar 

  23. 23.

    Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  ADS  Google Scholar 

  24. 24.

    Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603–605

    Article  CAS  ADS  Google Scholar 

  25. 25.

    Bethune D S, Klang C H, de Vries M S, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607

    Article  CAS  ADS  Google Scholar 

  26. 26.

    Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 1995, 243(1–2): 49–54

    Article  CAS  Google Scholar 

  27. 27.

    Zhang M F, Yudasaka M, Iijima S. Production of large-diameter single-wall carbon nanotubes by adding Fe to a NiCo catalyst in laser ablation. The Journal of Physical Chemistry B, 2004, 108(34): 12757–12762

    Article  CAS  Google Scholar 

  28. 28.

    Kiang C H. Growth of large-diameter single-walled carbon nanotubes. The Journal of Physical Chemistry A, 2000, 104(11): 2454–2456

    Article  CAS  Google Scholar 

  29. 29.

    Lebedkin S, Schweiss P, Renker B, et al. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon, 2002, 40(3): 417–423

    Article  CAS  Google Scholar 

  30. 30.

    Yang Q H, Bai S, Sauvajol J-L, et al. Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition. Advanced Materials, 2003, 15(10): 792–795

    Article  CAS  Google Scholar 

  31. 31.

    Lupo F, Rodriguezmanzo J, Zamudio A, et al. Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen. Chemical Physics Letters, 2005, 410(4–6): 384–390

    Article  CAS  ADS  Google Scholar 

  32. 32.

    Huang S M, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Letters, 2004, 4(6): 1025–1028

    Article  CAS  ADS  Google Scholar 

  33. 33.

    Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902

    Article  CAS  Google Scholar 

  34. 34.

    Ma J, Wang J N, Wang X X. Large-diameter and water-dispersible single-walled carbon nanotubes: synthesis, characterization and applications. Journal of Materials Chemistry, 2009, 19(19): 3033–3041

    Article  CAS  Google Scholar 

  35. 35.

    Moors M, Amara H, de Bocarmé T V, et al. Early stages in the nucleation process of carbon nanotubes. ACS Nano, 2009, 3(3): 511–516

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Ohta Y, Okamoto Y, Irle S, et al. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations. ACS Nano, 2008, 2(7): 1437–1444

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Jin C, Suenaga K, Iijima S. How does a carbon nanotube grow? An in situ investigation on the cap evolution. ACS Nano, 2008, 2(6): 1275–1279

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, 2008, 100(5): 056105 (4 pages)

    Article  CAS  PubMed  ADS  Google Scholar 

  39. 39.

    Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism. Nano Letters, 2009, 9(4): 1673–1677

    Article  CAS  PubMed  ADS  Google Scholar 

  40. 40.

    Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 1992, 68(10): 1579–1581

    Article  CAS  PubMed  ADS  Google Scholar 

  41. 41.

    Kam N W, O’Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences USA, 2005, 102(33): 11600–11605

    Article  CAS  ADS  Google Scholar 

  42. 42.

    Painter G S, Ellis D E. Electronic band structure and optical properties of graphite from a variational approach. Physical Review B, 1970, 1(12): 4747–4752

    Article  ADS  Google Scholar 

  43. 43.

    Blase X, Benedict L X, Shirley E L, et al. Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 1994, 72(12): 1878–1881

    Article  CAS  PubMed  ADS  Google Scholar 

  44. 44.

    Zhang H, Liu Y, Cao L. A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction. Advanced Materials, 2009, 21(7): 813–816

    Article  CAS  Google Scholar 

  45. 45.

    Kanungo M, Lu H, Malliaras G G, et al. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions. Science, 2009, 323(5911): 234–237

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Wang J, Li Y. Selective band structure modulation of single-walled carbon nanotubes in ionic liquids. Journal of the American Chemical Society, 2009, 131(15): 5364–5365

    Article  CAS  Google Scholar 

  47. 47.

    Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes. Acta Biomaterialia, 2008, 4(6): 1593–1602

    Article  PubMed  Google Scholar 

  48. 48.

    Tasis D, Papagelis K, Douroumis D, et al. Diameter-selective solubilization of carbon nanotubes by lipid micelles. Journal of Nanoscience and Nanotechnology, 2008, 8(1): 420–423

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Kang S, Pinault M, Pfefferle L D, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17): 8670–8673

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008, 24(13): 6409–6413

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. The Journal of Toxicological Sciences, 2008, 33(1): 105–116

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Kaiser J P, Wick P, Manser P, et al. Single walled carbon nanotubes (SWcarbon nanotube) affect cell physiology and cell architecture. Journal of Materials Science — Materials in Medicine, 2008, 19(4): 1523–1527

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Wu X C, Zhang W J, Sammynaiken R, et al. Non-functionalized carbon nanotube binding with hemoglobin. Colloids and Surfaces B Biointerfaces, 2008, 65(1): 146–149

    Article  CAS  Google Scholar 

  54. 54.

    Li X, Chen W, Zhan Q, et al. Direct measurements of interactions between polypeptides and carbon nanotubes. Journal of Physical Chemistry B, 2006, 110(25): 12621–12625

    Article  CAS  Google Scholar 

  55. 55.

    Poenitzsch V Z, Winters D C, Xie H, et al. Effect of electrondonating and electron-withdrawing groups on peptide/single-walled carbon nanotube interactions. Journal of the American Chemical Society, 2007, 129(47): 14724–14732

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Su Z, Mui K, Daub E, et al. Single-walled carbon nanotube binding peptides: probing tryptophan’s importance by unnatural amino acid substitution. Journal of Physical Chemistry B, 2007, 111(51): 14411–14417

    Article  CAS  Google Scholar 

  57. 57.

    Su Z, Leung T, Honek J F. Conformational selectivity of peptides for single-walled carbon nanotubes. Journal of Physical Chemistry B, 2006, 110(47): 23623–23627

    Article  CAS  Google Scholar 

  58. 58.

    Brown S, Jespersen T S, Nygard J A. genetic analysis of carbonnanotube-binding proteins. Small, 2008, 4(4): 416–420

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Ma B, Elkayam T, Wolfson H, et al. Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proceedings of National Academy of Sciences USA, 2003, 100(10): 5772–5777

    Article  CAS  ADS  Google Scholar 

  60. 60.

    Linse S, Cabaleiro-Lago C, Xue W F, et al. Nucleation of protein fibrillation by nanoparticles. Proceedings of National Academy of Sciences USA, 2007, 104(21): 8691–8696

    Article  CAS  ADS  Google Scholar 

  61. 61.

    Ma B, Nussinov R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Current Opinion in Chemical Biology, 2006, 10(5): 445–452

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Ma B, Nussinov R. Trp/Met/Phe hot spots in protein-protein interactions: potential targets in drug design. Current Topics in Medicinal Chemistry, 2007, 7(10): 999–1005

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Meng J, Song L, Xu H, et al. Effects of single-walled carbon nanotubes on the functions of plasma proteins and potentials in vascular prostheses. Nanomedicine, 2005, 1(2): 136–142

    CAS  PubMed  Google Scholar 

  64. 64.

    Zhao C, Ren J, Qu X. Single-walled carbon nanotubes binding to human telomeric i-motif DNA under molecular-crowding conditions: more water molecules released. Chemistry (Easton), 2008, 14(18): 5435–5439

    CAS  Google Scholar 

  65. 65.

    Zhao X, Johnson J K. Simulation of adsorption of DNA on carbon nanotubes. Journal of the American Chemical Society, 2007, 129(34): 10438–10445

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Johnson R R, Charlie Johnson A T, Klein M L. Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Letters, 2008, 8(1): 69–75

    Article  CAS  PubMed  ADS  Google Scholar 

  67. 67.

    Li X, Peng Y, Qu X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B–A transition in solution. Nucleic Acids Research, 2006, 34(13): 3670–3676

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Peng Y, Li X, Ren J, et al. Single-walled carbon nanotubes binding to human telomeric i-motif DNA: significant acceleration of S1 nuclease cleavage rate. Chemical Communications (Cambridge), 2007, (48): 5176–5178

  69. 69.

    Kisin E R, Murray A R, Keane M J, et al. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. Journal of Toxicology and Environmental Health A, 2007, 70(24): 2071–2079

    Article  CAS  Google Scholar 

  70. 70.

    Sharma C S, Sarkar S, Periyakaruppan A, et al. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. Journal of Nanoscience and Nanotechnology, 2007, 7(7): 2466–2472

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Zhu L, Chang D W, Dai L, et al. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letters, 2007, 7(12): 3592–3597

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Buyong Ma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, J., Wang, JN., Tsai, CJ. et al. Diameters of single-walled carbon nanotubes (SWCNTs) and related nanochemistry and nanobiology. Front. Mater. Sci. China 4, 17–28 (2010). https://doi.org/10.1007/s11706-010-0001-8

Download citation

Keywords

  • carbon nanotube (CNT)
  • nanobiology
  • protein
  • DNA
  • toxicity
  • cancer