Skip to main content
Log in

Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Methane cracking is considered a bridge technology between gray and green hydrogen production processes. In this work an experimental study of methane cracking in molten tin is performed. The tests were conducted in a quartz reactor (i.d. = 1.5 cm, L = 20 cm) with capillary injection, varying temperature (950–1070 °C), inlet methane flow rate (30–60 mL·min−1) and tin height (0–20 cm). The influence of the residence time in the tin and in the headspace on methane conversion and on carbon morphology was investigated. The conversions obtained in tin and in the empty reactor were measured and compared with results of detailed kinetic simulations (CRECK). Furthermore, an expression of a global kinetic constant for methane conversion in tin was also derived. The highest conversion (65% at Q0 = 30 mL·min−1 and t = 1070 °C) is obtained for homogeneous gas phase reaction due to the long residence time (70 s), the presence of tin leads to a sharp decrease of residence time (1 s), obtaining a conversion of 35% at 1070 °C, thus meaning that tin owns a role in the reaction. Carbon characterization (scanning electron microscopy, Raman) reported a change in carbon toward sheet-like structures and an increase of the carbon structural order in the presence of molten tin media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ferraren-De Cagalitan D D T, Abundo M L S. A review of biohydrogen production technology for application towards hydrogen fuel cells. Renewable & Sustainable Energy Reviews, 2021, 151: 111413

    Article  CAS  Google Scholar 

  2. Soltani R, Rosen M A, Dincer I. Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. International Journal of Hydrogen Energy, 2014, 39(35): 20266–20275

    Article  CAS  Google Scholar 

  3. Patlolla S R, Katsu K, Sharafian A, Wei K, Herrera O E, Mérida W. A review of methane pyrolysis technologies for hydrogen production. Renewable & Sustainable Energy Reviews, 2023, 181: 113323

    Article  CAS  Google Scholar 

  4. Song H, Luo S, Huang H, Deng B, Ye J. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Letters, 2022, 7(3): 1043–1065

    Article  CAS  Google Scholar 

  5. Damizia M, Bracciale M P, Anania F, Tai L, De Filippis P, de Caprariis B. Efficient utilization of Al2O3 as structural promoter of Fe into 2 and 3 steps chemical looping hydrogen process: pure H2 production from ethanol. International Journal of Hydrogen Energy, 2023, 48(99): 39112–39123

    Article  CAS  Google Scholar 

  6. Arutyunov V, Savchenko V, Sedov I, Nikitin A. Non-catalytic gas phase oxidation of hydrocarbons. Eurasian Chemico-Technological Journal, 2022, 24(1): 13

    Article  CAS  Google Scholar 

  7. De Filippis P, Scarsella M, de Caprariis B, Uccellari R. Biomass gasification plant and syngas clean-up system. Energy Procedia, 2015, 75: 240–245

    Article  CAS  Google Scholar 

  8. Fabry F, Rehmet C, Rohani V, Fulcheri L. Waste gasification by thermal plasma: a review. Waste and Biomass Valorization, 2013, 4(3): 421–439

    Article  CAS  Google Scholar 

  9. European Commission. Directorate-General for Climate Action. Going climate-neutral by 2050—a strategic long-term vision for a prosperous, modern, competitive and climate-neutral EU economy. 2019. Available at the website of Publication Office of the European Union

  10. Weger L, Abánades A, Butler T. Methane cracking as a bridge technology to the hydrogen economy. International Journal of Hydrogen Energy, 2017, 42(1): 720–731

    Article  CAS  Google Scholar 

  11. Serban M, Lewis M A, Marshall C L, Doctor R D. Hydrogen production by direct contact pyrolysis of natural gas. Energy & Fuels, 2003, 17(3): 705–713

    Article  CAS  Google Scholar 

  12. Muradov N, Vezirolu T. From hydrocarbon to hydrogen? carbon to hydrogen economy International Journal of Hydrogen Energy, 2005, 30(3): 225–237

    Article  CAS  Google Scholar 

  13. de Caprariis B, Damizia M, Busillo E, De Filippis P. Advances in molten media technologies for methane pyrolysis. Advances in Chemical Engineering, 2023, 61: 319–356

    Article  Google Scholar 

  14. Arutyunov V S, Strekova L N. The interplay of catalytic and gasphase stages at oxidative conversion of methane: a review. Journal of Molecular Catalysis A Chemical, 2017, 426: 326–342

    Article  CAS  Google Scholar 

  15. Horn R, Schlögl R. Methane activation by heterogeneous catalysis. Catalysis Letters, 2015, 145(1): 23–39

    Article  CAS  Google Scholar 

  16. Parfenov V E, Nikitchenko N V, Pimenov A A, Kuz’min A E, Kulikova M V, Chupichev O B, Maksimov A L. Methane pyrolysis for hydrogen production: specific features of using molten metals. Russian Journal of Applied Chemistry, 2020, 93(5): 625–632

    Article  CAS  Google Scholar 

  17. Kang D, Palmer C, Mannini D, Rahimi N, Gordon M J, Metiu H, McFarland E W. Catalytic methane pyrolysis in molten alkali chloride salts containing iron. ACS Catalysis, 2020, 10(13): 7032–7042

    Article  CAS  Google Scholar 

  18. Rahimi N, Kang D, Gelinas J, Menon A, Gordon M J, Metiu H, McFarland E W. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. Carbon, 2019, 151: 181–191

    Article  CAS  Google Scholar 

  19. Kudinov I V, Pimenov A A, Kryukov Y A, Mikheeva G V. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin. International Journal of Hydrogen Energy, 2021, 46(17): 10183–10190

    Article  CAS  Google Scholar 

  20. Plevan M, Geißler T, Abánades A, Mehravaran K, Rathnam R K, Rubbia C, Salmieri D, Stoppel L, Stückrad S, Wetzel T. Thermal cracking of methane in a liquid metal bubble column reactor: experiments and kinetic analysis. International Journal of Hydrogen Energy, 2015, 40(25): 8020–8033

    Article  CAS  Google Scholar 

  21. Geißler T, Plevan M, Abánades A, Heinzel A, Mehravaran K, Rathnam R K, Rubbia C, Salmieri D, Stoppel L, Stückrad S, et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. International Journal of Hydrogen Energy, 2015, 40(41): 14134–14146

    Article  Google Scholar 

  22. Assael M J, Kalyva A E, Antoniadis K D, Michael Banish R, Egry I, Wu J, Kaschnitz E, Wakeham W A. Reference data for the density and viscosity of liquid copper and liquid tin. Journal of Physical and Chemical Reference Data, 2010, 39(3): 033105

    Article  Google Scholar 

  23. Msheik M, Rodat S, Abanades S. Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors. Energy, 2022, 260: 124943

    Article  CAS  Google Scholar 

  24. Cuoci A, Frassoldati A, Faravelli T, Ranzi E. OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms. Computer Physics Communications, 2015, 192: 237–264

    Article  CAS  Google Scholar 

  25. Zeng J, Tarazkar M, Pennebaker T, Gordon M J, Metiu H, McFarland E W. Catalytic methane pyrolysis with liquid and vapor phase tellurium. ACS Catalysis, 2020, 10(15): 8223–8230

    Article  CAS  Google Scholar 

  26. Leal Pérez B J, Medrano Jiménez J A, Bhardwaj R, Goetheer E, van Sint Annaland M, Gallucci F. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: proof of concept & techno-economic assessment. International Journal of Hydrogen Energy, 2021, 46(7): 4917–4935

    Article  Google Scholar 

  27. Alcock C B, Itkin V P, Horrigan M K. Vapour pressure equations for the metallic elements: 298–2500 K. Canadian Metallurgical Quarterly, 1984, 23(3): 309–313

    Article  CAS  Google Scholar 

  28. Thapliyal V, Alabdulkarim M E, Whelan D R, Mainali B, Maxwell J L. A concise review of the Raman spectra of carbon allotropes. Diamond and Related Materials, 2022, 127: 1–16

    Article  Google Scholar 

  29. Kim J, Oh C, Oh H, Lee Y, Seo H, Kim Y K. Catalytic methane pyrolysis for simultaneous production of hydrogen and graphitic carbon using a ceramic sparger in a molten NiSn alloy. Carbon, 2023, 207: 1–12

    Article  CAS  Google Scholar 

  30. Parkinson B, Patzschke C F, Nikolis D, Raman S, Hellgardt K. Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: mass transfer and carbon formation mechanisms. Chemical Engineering Journal, 2021, 417: 127407

    Article  CAS  Google Scholar 

  31. Andreini R J, Foster J S, Callen R W. Characterization of gas bubbles injected into molten metals under laminar flow conditions. Metallurgical Transactions. B, Process Metallurgy, 1977, 8(4): 625–631

    Article  Google Scholar 

  32. Sun Z, Parkinson B, Agbede O O, Hellgardt K. Noninvasive differential pressure technique for bubble characterization in high-temperature opaque systems. Industrial & Engineering Chemistry Research, 2020, 59(13): 6236–6246

    Article  CAS  Google Scholar 

  33. von Morgenstern I B, Mersmann A. Bildung fluider Partikeln in ruhenden und strömenden Flüssigkeiten. Chemieingenieurtechnik (Weinheim), 1983, 55(7): 580–581 (in German)

    CAS  Google Scholar 

  34. Lee J, Shimoda W, Tanaka T. Surface tension and its temperature coefficient of liquid Sn-X (X = Ag, Cu) alloys. Materials Transactions, 2004, 45(9): 2864–2870

    Article  CAS  Google Scholar 

  35. Davidson L, Amick E H Jr. Formation of gas bubbles at horizontal orifices. AIChE Journal. American Institute of Chemical Engineers, 1956, 2(3): 337–342

    Article  CAS  Google Scholar 

  36. Cuoci A, Frassoldati A, Faravelli T, Ranzi E. Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy & Fuels, 2013, 27(12): 7730–7753

    Article  CAS  Google Scholar 

  37. Ranzi E, Cavallotti C, Cuoci A, Frassoldati A, Pelucchi M, Faravelli T. New reaction classes in the kinetic modeling of low temperature oxidation of n-alkanes. Combustion and Flame, 2015, 162(5): 1679–1691

    Article  CAS  Google Scholar 

  38. Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A P, Law C K. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science, 2012, 38(4): 468–501

    Article  CAS  Google Scholar 

  39. Zaghloul N, Kodama S, Sekiguchi H. Hydrogen production by methane pyrolysis in a molten hyphen metal bubble column. Chemical Engineering & Technology, 2021, 44(11): 1986–1993

    Article  CAS  Google Scholar 

  40. Arutyunov V S, Vedeneev V I. Pyrolysis of methane in the temperature range 1000–1700 K. Russian Chemical Reviews, 1991, 60(12): 1384–1397

    Article  Google Scholar 

  41. Kevorkian V, Heath C E, Boudart M. The decomposition of methane in shock waves 1. Journal of Physical Chemistry, 1960, 64(8): 964–968

    Article  CAS  Google Scholar 

  42. Msheik M, Rodat S, Abanades S. Enhancing molten tin methane pyrolysis performance for hydrogen and carbon production in a hybrid solar/electric bubbling reactor. International Journal of Hydrogen Energy, 2024, 49: 962–980

    Article  CAS  Google Scholar 

  43. Santangelo S, Messina G, Faggio G, Lanza M, Milone C. Evaluation of crystalline perfection degree of multi-walled carbon nanotubes: correlations between thermal kinetic analysis and micro-Raman spectroscopy. Journal of Raman Spectroscopy: JRS, 2011, 42(4): 593–602

    Article  CAS  Google Scholar 

  44. Bokobza L, Bruneel J L, Couzi M. Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. Journal of Carbon Research, C, 2015, 1: 77–94

    Article  Google Scholar 

  45. Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B: Condensed Matter, 2000, 61(20): 14095–14107

    Article  CAS  Google Scholar 

  46. Abánades A, Ruiz E, Ferruelo E M, Hernández F, Cabanillas A, Martínez-Val J M, Rubio J A, López C, Gavela R, Barrera G, et al. Experimental analysis of direct thermal methane cracking. International Journal of Hydrogen Energy, 2011, 36(20): 12877–12886

    Article  Google Scholar 

  47. Qiao C, Che J, Wang J, Wang X, Qiu S, Wu W, Chen Y, Zu X, Tang Y. Cost effective production of high quality multilayer graphene in molten Sn bubble column by using CH4 as carbon source. Journal of Alloys and Compounds, 2023, 930: 167495

    Article  CAS  Google Scholar 

  48. Johansson K O, El Gabaly F, Schrader P E, Campbell M F, Michelsen H A. Evolution of maturity levels of the particle surface and bulk during soot growth and oxidation in a flame. 7Aerosol Science and Technology, 2017, 51(12): 1333–1344

    CAS  Google Scholar 

  49. Msheik M, Rodat S, Abanades S. Methane cracking for hydrogen production: a review of catalytic and molten media pyrolysis. Energies, 2021, 14(11): 3107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta de Caprariis.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic supplementary material

11705_2024_2437_MOESM1_ESM.pdf

Electronic Supplementary Material: Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busillo, E., de Caprariis, B., Bracciale, M.P. et al. Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process. Front. Chem. Sci. Eng. 18, 82 (2024). https://doi.org/10.1007/s11705-024-2437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2437-x

Keywords

Navigation