Skip to main content
Log in

Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mäki-Arvela P, Hájek J, Salmi T, Murzin D Y. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49

    Article  Google Scholar 

  2. Stolle A, Gallert T, Schmöger C, Ondruschka B. Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153

    Article  CAS  Google Scholar 

  3. Gallezot P, Richard D. Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126

    Article  CAS  Google Scholar 

  4. Laref S, Delbecq F, Loffreda D. Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42

    Article  CAS  Google Scholar 

  5. Bailón-García E, Maldonado-Hódar F, Pérez-Cadenas A, Carrasco-Marín F. Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877

    Article  Google Scholar 

  6. Wang X, Liang X, Geng P, Li Q. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412

    Article  CAS  Google Scholar 

  7. Luneau M, Lim J S, Patel D A, Sykes E C H, Friend C M, Sautet P. Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872

    Article  CAS  PubMed  Google Scholar 

  8. Delbecq F. Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126

    Article  CAS  Google Scholar 

  9. Li X, Zhang S, Zhu L, Liu J, Zhang H, Zhao N, Chen B H. Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003

    Article  CAS  Google Scholar 

  10. Mohire S S, Yadav G D. Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093

    Article  CAS  Google Scholar 

  11. Han S, Liu Y, Li J, Li R, Yuan F, Zhu Y. Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200

    Article  Google Scholar 

  12. Jia A, Yao X, Feng L, Ma Z, Li F, Wang Y. Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191

    Article  CAS  Google Scholar 

  13. Lv Y, Han M, Gong W, Wang D, Chen C, Wang G, Zhang H, Zhao H. Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526

    Article  CAS  PubMed  Google Scholar 

  14. Rojas H, Díaz G, Martínez J J, Castañeda C, Gómez-Cortés A, Arenas-Alatorre J. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128

    Article  Google Scholar 

  15. Jiang F, Cai J, Liu B, Xu Y, Liu X. Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551

    Article  CAS  Google Scholar 

  16. Alfilfil L, Ran J, Chen C, Dong X, Wang J, Han Y. Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566

    Article  CAS  Google Scholar 

  17. Das A, Mondal S, Hansda K M, Adak M K, Dhak D. A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955

    Article  CAS  Google Scholar 

  18. Chen Z, Chen J, Li Y. Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126

    Article  CAS  Google Scholar 

  19. Zahid M, Ismail A, Sohail M, Zhu Y. Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152

    Article  CAS  PubMed  Google Scholar 

  20. Miao C, Zhang F, Cai L, Hui T, Feng J, Li D. Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947

    Article  CAS  Google Scholar 

  21. Zhang J, Gao M, Zhu P, Wang Y, Wang R, Zheng Z. Photocatalytic selective hydrogenation of α-β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589

    Article  CAS  Google Scholar 

  22. Zhang R, Wang L, Yang X, Tao Z, Ren X, Lv B. The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745

    Article  CAS  Google Scholar 

  23. Cao Z, Bu J, Zhong Z, Sun C, Zhang Q, Wang J, Chen S, Xie X. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115

    Article  CAS  Google Scholar 

  24. Zhang J, Gao Z, Wang S, Wang G, Gao X, Zhang B, Xing S, Zhao S, Qin Y. Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ning L, Zhang M, Liao S, Zhang Y, Jia D, Yan Y, Gu W, Liu X. Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711

    Article  CAS  Google Scholar 

  26. Yang K, Li Y, Wang R, Li Q, Huang B, Guo X, Zhu Z, Su T, Lü H. Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898

    Article  CAS  Google Scholar 

  27. Zhang S, Xia Z, Zhang M, Zou Y, Shen H, Li J, Chen X, Qu Y. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418

    Article  CAS  Google Scholar 

  28. Wang K, He X, Wang J C, Liang X. Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602

    Article  CAS  Google Scholar 

  29. Kardos J, Harmat V, Palló A, Barabás O, Szilágyi K, Gráf L, Náray-Szabó G, Goto Y, Závodszky P, Gál P. Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760

    Article  CAS  PubMed  Google Scholar 

  30. Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu E, Feng H, Wang L, Zhang Y, Liu K, Cui S, Meng H, Wang G, Yang Y. Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001

    Article  CAS  Google Scholar 

  32. Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287

    Article  CAS  Google Scholar 

  33. Zhang L, Zhou M, Wang A, Zhang T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733

    Article  CAS  PubMed  Google Scholar 

  34. Lan X, Wang T. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790

    Article  CAS  Google Scholar 

  35. Santana C G, Krische M J. From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xin H, Zhang W, Xiao X, Chen L, Wu P, Li X. Selective hydrogenation of cinnamaldehyde with NixFe1−xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139

    Article  CAS  Google Scholar 

  37. Wang F F, Guo R, Jian C P, Zhang W, Xue R F, Chen D L, Zhang F M, Zhu W D. Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146

    Article  CAS  PubMed  Google Scholar 

  38. Lan X, Xue K, Wang T. Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60

    Article  CAS  Google Scholar 

  39. Lin W, Cheng H, Li X, Zhang C, Zhao F, Arai M. Layered double hydroxide-like Mg3Al1−xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996

    Article  CAS  Google Scholar 

  40. Dai Y, Chu X, Gu J, Gao X, Xu M, Lu D, Wan X, Qi W, Zhang B, Yang Y. Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098

    Article  CAS  Google Scholar 

  41. de la Peña O’Shea V A, Moreira I P R, Roldán A, Illas F. Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701

    Article  PubMed  Google Scholar 

  42. Hu H, Xi J. Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959

    Article  CAS  Google Scholar 

  43. Ren Y, Yang Y, Wei M. Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924

    Article  CAS  Google Scholar 

  44. Zhao X, Chang Y, Chen W, Wu Q, Pan X, Chen K, Weng B. Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31

    Article  CAS  PubMed  Google Scholar 

  45. Gao R, Pan L, Wang H, Yao Y, Zhang X, Wang L, Zou J J. Breaking trade-off between selectivity and activity of nickelbased hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054

    Article  PubMed  PubMed Central  Google Scholar 

  46. Song S, Liu X, Li J, Pan J, Wang F, Xing Y, Wang X, Liu X, Zhang H. Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495

    Article  Google Scholar 

  47. Long Y, Song S, Li J, Wu L, Wang Q, Liu Y, Jin R, Zhang H. Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512

    Article  CAS  Google Scholar 

  48. Hu Q, Wang S, Gao Z, Li Y, Zhang Q, Xiang Q, Qin Y. The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599

    Article  CAS  Google Scholar 

  49. Padmanaban S, Lee Y, Yoon S. Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367

    Article  CAS  Google Scholar 

  50. Liu C, Zhu P, Wang J, Liu H, Zhang X. Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective α,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064

    Article  CAS  Google Scholar 

  51. Chen B, Yang X, Xu Y, Hu S, Zeng X, Liu Y, Tan K B, Huang J, Zhan G. Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759

    Article  CAS  PubMed  Google Scholar 

  52. Prashar A K, Mayadevi S, Nandini Devi R. Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46

    Article  CAS  Google Scholar 

  53. Prakash M G, Mahalakshmy R, Krishnamurthy K R, Viswanathan B. Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321

    Article  CAS  Google Scholar 

  54. Zhu W, Chen C. Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739

    Article  CAS  Google Scholar 

  55. Wang X, He Y, Liu Y, Park J, Liang X. Atomic layer deposited Pt-Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69

    Article  CAS  Google Scholar 

  56. Weng Z, Zaera F. Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848

    Article  CAS  Google Scholar 

  57. Li J, Guan Q, Wu H, Liu W, Lin Y, Sun Z, Ye X, Zheng X, Pan H, Zhu J, et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. Journal of the American Chemical Society, 2019, 141(37): 14515–14519

    Article  CAS  PubMed  Google Scholar 

  58. Qiao B, Liu J, Wang Y, Lin Q, Liu X, Wang A, Li J, Zhang T, Liu J. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254

    Article  CAS  Google Scholar 

  59. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634

    Article  CAS  PubMed  Google Scholar 

  60. Yang H, Shang L, Zhang Q, Shi R, Waterhouse G I N, Gu L, Zhang T. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang Z, Feng C, Liu C, Zuo M, Qin L, Yan X, Xing Y, Li H, Si R, Zhou S, et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11(1): 1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kusumawati E N, Sasaki T, Shirai M. Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923

    Article  CAS  Google Scholar 

  63. Su J, Shi W, Liu X, Zhang L, Cheng S, Zhang Y, Botton G A, Zhang B. Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170

    Article  CAS  Google Scholar 

  64. Wang H, Bai S, Pi Y, Shao Q, Tan Y, Huang X. A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159

    Article  Google Scholar 

  65. Yuan E, Wang C, Wu C, Shi G, Jian P, Hou X. Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858

    Article  CAS  Google Scholar 

  66. Li H, Cui K, Lei Y, Chen J, Li Y, Liu D, Xiong W. Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580

    Article  CAS  Google Scholar 

  67. Gao X, Tian S, Jin Y, Wan X, Zhou C, Chen R, Dai Y, Yang Y. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730

    Article  CAS  Google Scholar 

  68. Qu P F, Chen J G, Song Y H, Liu Z T, Liu Z W, Li Y, Lu J, Jiang J Q. Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109

    Article  CAS  Google Scholar 

  69. Chen X, Cao H, Chen X, Du Y, Qi J, Luo J, Armbruster M, Liang C. Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561

    Article  CAS  Google Scholar 

  70. Yang Y, Rao D, Chen Y, Dong S, Wang B, Zhang X, Wei M. Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760

    Article  CAS  Google Scholar 

  71. Chen M, Yan Y, Gebre M, Ordonez C, Liu F, Qi L, Lamkins A, Jing D, Dolge K, Zhang B, et al. Thermal unequilibrium of PdSn intermetallic nanocatalysts: from in situ tailored synthesis to unexpected hydrogenation selectivity. Angewandte Chemie International Edition, 2021, 60(33): 18309–18317

    Article  CAS  PubMed  Google Scholar 

  72. Meng Y, Xia S, Zhou X, Pan G. Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049

    Article  CAS  Google Scholar 

  73. Kumar P, Sharma P K, Nannaware A D, Chanotiya C S, Mohapatra P, Rout P K. Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236

    Article  CAS  Google Scholar 

  74. Li C, Chen Y, Zhang S, Xu S, Zhou J, Wang F, Wei M, Evans D G, Duan X. Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896

    Article  CAS  Google Scholar 

  75. Rodiansono, Astuti M D, Mujiyanti D R, Santoso U T, Shimazu S. Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60

    Article  CAS  Google Scholar 

  76. Stassi J P, Zgolicz P D, Rodríguez V I, De Miguel S R, Scelza O A. Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71

    Article  CAS  Google Scholar 

  77. Cao Y, Chen B, Guerrero-Sánchez J, Lee I, Zhou X, Takeuchi N, Zaera F. Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157

    Article  CAS  Google Scholar 

  78. Ciotonea C, Chirieac A, Dragoi B, Dhainaut J, Marinova M, Pronier S, Arii-Clacens S, Dacquin J P, Dumitriu E, Ungureanu A, et al. Playing on 3d spatial distribution of Cu–Co (oxide) nanoparticles in inorganic mesoporous sieves: impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623: 118303

    Article  CAS  Google Scholar 

  79. Islam M J, Granollers Mesa M, Osatiashtiani A, Taylor M J, Isaacs M A, Kyriakou G. The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu B H, Huang H Q, Yang J, Zheng N F, Fu G. Selective hydrogenation of α,β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443

    Article  CAS  PubMed  Google Scholar 

  81. Wu Q, Zhang C, Arai M, Zhang B, Shi R, Wu P, Wang Z, Liu Q, Liu K, Lin W, et al. Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catalysis, 2019, 9(7): 6425–6434

    Article  CAS  Google Scholar 

  82. Liang Y, Douthwaite M, Huang X, Zhao B, Tang Q, Liu L, Dong J. Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093

    Article  CAS  Google Scholar 

  83. Liang Y, Tang Q, Liu L, Wang D, Dong J. Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783

    Article  CAS  Google Scholar 

  84. Li L, Jiao Z F, Zhao J X, Yao D, Li X, Guo X Y. Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321

    Article  CAS  Google Scholar 

  85. Shen H, Zhao H, Yang J, Zhao J, Yan L, Chou L, Song H. A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714

    Article  CAS  Google Scholar 

  86. Zahid M, Li J, Ismail A, Zaera F, Zhu Y. Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445

    Article  CAS  Google Scholar 

  87. Xin H, Xue Y, Zhang W, Wu P, Li X. CoxFe1−xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266

    Article  CAS  Google Scholar 

  88. Gu Z, Chen L, Li X, Chen L, Zhang Y, Duan C. NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117

    Article  CAS  PubMed  Google Scholar 

  89. Shen H, Zhao H, Yang J, Zhao J, Yan L, Chou L, Song H. The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105

    Article  CAS  Google Scholar 

  90. Lo W S, Chou L Y, Young A P, Ren C, Goh T W, Williams B P, Li Y, Chen S Y, Ismail M N, Huang W, et al. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chemistry of Materials, 2021, 33(6): 1946–1953

    Article  CAS  Google Scholar 

  91. Ye H, Zhao H, Jiang Y, Liu H, Hou Z. Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268

    Article  CAS  Google Scholar 

  92. Zhang T, Zhao H, Yang J, Zhao J, Yan L, Chou L, Song H. Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977

    Article  CAS  Google Scholar 

  93. Hou F, Zhao H, Song H, Chou L, Zhao J, Yang J, Yan L. Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973

    Article  CAS  Google Scholar 

  94. Bailón-García E, Carrasco-Marín F, Pérez-Cadenas A F, Maldonado-Hódar F J. Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95

    Article  Google Scholar 

  95. Zgolicz P D, Stassi J P, Yañez M J, Scelza O A, De Miguel S R. Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54

    Article  CAS  Google Scholar 

  96. Ramos Montero G E, Stassi J P, De Miguel S R, Zgolicz P D. Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149

    Article  CAS  Google Scholar 

  97. Barrales-Cortés C A, Pérez-Pastenes H, Piña-Victoria J C, Viveros-García T. Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480

    Article  Google Scholar 

  98. Rautio A R, Mäki-Arvela P, Aho A, Eränen K, Kordas K. Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178

    Article  CAS  Google Scholar 

  99. Yan D, Li J, Zahid M, Li J, Zhu Y. Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308

    Article  CAS  Google Scholar 

  100. Tian X, Dong Y, Zahid M. Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188

    Article  CAS  Google Scholar 

  101. Gao G, Remón J, Jiang Z, Yao L, Hu C. Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260

    Article  CAS  Google Scholar 

  102. Byun M Y, Lee M S. Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415

    Article  CAS  Google Scholar 

  103. Yang Q, Gao D, Li C, Cao S, Li S, Zhao H, Li C, Zheng G, Chen G. Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584

    Article  CAS  Google Scholar 

  104. Liu L, Lou H, Chen M. Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10

    Article  CAS  Google Scholar 

  105. Wang S, Wu C, Yu H, Chu Y, Wang S, Li T, Yin H. Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867

    Article  CAS  Google Scholar 

  106. Wang C, Wang S, Wu Z, Lv Y, Chen G, Zhao H, Gao D. Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711

    Article  CAS  Google Scholar 

  107. Yang Q, Gao D, Li C, Wang S, Hu X, Zheng G, Chen G. Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458

    Article  CAS  Google Scholar 

  108. Yu H, Xu Y, Havener K, Zhang L, Wu W, Liao X, Huang K. Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343

    Article  CAS  Google Scholar 

  109. Liang C, Li H, Peng M, Zhang X, Jiang Q, Cui J, Ding Y, Zhang Z C. Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766

    Article  CAS  Google Scholar 

  110. Saribiyik O Y, Resasco D E. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13

  111. Bailón-García E, Carrasco-Marín F, Pérez-Cadenas A F, Maldonado-Hódar F J. Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40

    Article  Google Scholar 

  112. Li L, Larsen A H, Romero N A, Morozov V A, Glinsvad C, Abild-Pedersen F, Greeley J, Jacobsen K W, Nørskov J K. Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226

    Article  CAS  PubMed  Google Scholar 

  113. Cao Y, Guerrero-Sanchez J, Lee I, Zhou X, Takeuchi N, Zaera F. Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443

    Article  CAS  Google Scholar 

  114. Wang H, Lan X, Wang S, Ali B, Wang T. Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116

    Article  CAS  Google Scholar 

  115. Cheng S, Lu S, Liu X, Li G, Wang F. Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Goh T W, Tsung C K, Huang W. Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260

    Article  CAS  Google Scholar 

  117. Luo W, Fang L, Meng Y, Xue J, Chen T, Xia S, Ni Z. Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122

    CAS  Google Scholar 

  118. Kolodziej M, Lalik E, Colmenares J C, Lisowski P, Gurgul J, Duraczynska D, Drelinkiewicz A. Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372

    Article  CAS  Google Scholar 

  119. Li Y, Cheng H, Lin W, Zhang C, Wu Q, Zhao F, Arai M. Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589

    Article  CAS  Google Scholar 

  120. Abasabadi R K, Khodadadi A A, Mortazavi Y. Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446

    Article  CAS  Google Scholar 

  121. Yuan H, Hong M, Dong F, Chen Y, Du X, Huang X, Gao J, Yang S. Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864

    Article  CAS  Google Scholar 

  122. Hu M, Jin L, Zhu Y, Zhang L, Lu X, Kerns P, Su X, Cao S, Gao P, Suib S L, et al. Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264: 118553

    Article  CAS  Google Scholar 

  123. Xu T, Sun K, Gao D, Li C, Hu X, Chen G. Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654

    Article  PubMed  Google Scholar 

  124. Hu T, Zhang L, Wang Y, Yue Z, Li Y, Ma J, Xiao H, Chen W, Zhao M, Zheng Z, et al. Defect engineering in Pd/NiCo2O4−x for selective hydrogenation of α,β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7851–7859

    Article  CAS  Google Scholar 

  125. Pinto J, Weilhard A, Norman L T, Lodge R W, Rogers D M, Gual A, Cano I, Khlobystov A N, Licence P, Alves Fernandes J. Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091

    Article  CAS  Google Scholar 

  126. Wei Z, Gong Y, Xiong T, Zhang P, Li H, Wang Y. Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404

    Article  CAS  Google Scholar 

  127. Patel A, Patel A. Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485

    Article  CAS  Google Scholar 

  128. Harraz F A, El-Hout S E, Killa H M, Ibrahim I A. Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188

    Article  CAS  Google Scholar 

  129. Zhu J, Li M, Lu M, Zhu J. Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744

    Article  CAS  Google Scholar 

  130. Liu C, Nan C, Fan G, Yang L, Li F. Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247

    Article  CAS  Google Scholar 

  131. Wang Z, Wang X, Zhang C, Arai M, Zhou L, Zhao F. Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599

    Article  CAS  Google Scholar 

  132. Silva W R, Matsubara E Y, Rosolen J M, Donate P M, Gunnella R. Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496

    Article  CAS  Google Scholar 

  133. Gao B, Zhang J, Zhang M, Li H, Yang J H. Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716

    Article  CAS  Google Scholar 

  134. Ruan L, Zhang H, Zhou M, Zhu L, Pei A, Wang J, Yang K, Zhang C, Xiao S, Chen B H. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639

    Article  CAS  Google Scholar 

  135. Zhao X, Wang Y, Zhai Z, Zhuang C, Tian D, Guo H, Zou X, Liu T X. Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324

    Article  CAS  Google Scholar 

  136. Yan H, Ren Y, Zhang R, Chang F, Wei Q, Xu J. A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298

    Article  CAS  Google Scholar 

  137. Wei X, Rang X, Zhu W, Xiang M, Deng Y, Jiang F, Mao R, Zhang Z, Kong X, Wang F. Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079

    Article  CAS  Google Scholar 

  138. Ling Y, Ge H, Chen J, Zhang Y, Duan Y, Liang M, Guo Y, Wu T S, Soo Y L, Yin X, et al. General strategy toward hydrophilic single atom catalysts for efficient selective hydrogenation. Advanced Science, 2022, 9(25): 2202144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ning L, Liao S, Li H, Tong R, Dong C, Zhang M, Gu W, Liu X. Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57

    Article  CAS  Google Scholar 

  140. Ren Y, Xu H, Han B, Xu J. Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Xin H, Li M, Chen L, Zhao C, Wu P, Li X. Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500

    Article  CAS  Google Scholar 

  142. Wang N, Liu J, Li X, Wang C, Ma L. One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658

    Article  CAS  Google Scholar 

  143. Tian F, Zhang M, Zhang X, Chen X, Wang J, Zhang Y, Meng C, Liang C. Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182

    Article  CAS  Google Scholar 

  144. Patil K N, Manikanta P M, Srinivasappa P, Jadhav A H, Nagaraja B M. Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208

    Article  CAS  Google Scholar 

  145. Chen Y, Liu W, Yin P, Ju M, Wang J, Yang W, Yang Y, Shen C. Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10

    Article  CAS  Google Scholar 

  146. Xu Y, Su T, Luo X, Qin Z, Ji H. Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703

    Article  CAS  PubMed  Google Scholar 

  147. Yu J, Yang Y, Chen L, Li Z, Liu W, Xu E, Zhang Y, Hong S, Zhang X, Wei M. NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273

    Article  CAS  Google Scholar 

  148. Zhao H, Song H, Chou L. Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265

    Article  CAS  Google Scholar 

  149. Mahata N, Cunha A F, Órfão J J M, Figueiredo J L. Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159

    Article  CAS  Google Scholar 

  150. Zhao H, Chou L, Song H. Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465

    Article  CAS  Google Scholar 

  151. Kumar P, Sharma P K, Chaturvedi S, Chanotiya C S, Rauta P R, Mohapatra P, Rout P K. Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030

    Article  CAS  Google Scholar 

  152. Yang L, Jiang Z S, Fan G L, Li F. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131

    Article  CAS  Google Scholar 

  153. Tang Y, Yang D, Qin F, Hu J, Wang C, Xu H. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284

    Article  CAS  Google Scholar 

  154. Wonglekha K, Tolek W, Mekasuwandumrong O, Chaitree W, Praserthdam P, Moon Lee K, Panpranot J. Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072

    Article  CAS  Google Scholar 

  155. Tang F, Wang L, Dessie Walle M, Mustapha A, Liu Y N. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180

    Article  CAS  Google Scholar 

  156. Putro W S, Kojima T, Hara T, Ichikuni N, Shimazu S. Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646

    Article  CAS  Google Scholar 

  157. Meng X, Yang Y, Chen L, Xu M, Zhang X, Wei M. A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235

    Article  CAS  Google Scholar 

  158. Zhang J, Mao D, Wu D. Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914

    Article  CAS  Google Scholar 

  159. Balla P, Seelam P K, Balaga R, Rajesh R, Perupogu V, Liang T X. Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530

    Article  CAS  Google Scholar 

  160. Fan Y, Zhuang C, Li S, Wang Y, Zou X, Liu X, Huang W, Zhu G. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118

    Article  CAS  Google Scholar 

  161. Yi D, Min Y, Muzzi B, Marty A, Romana I, Fazzini P F, Blon T, Viau G, Serp P, Soulantica K. Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507

    Article  CAS  Google Scholar 

  162. Zhang R, Wang L, Ren J, Hu C, Lv B. Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558

    Article  CAS  PubMed  Google Scholar 

  163. Shen Y, Chen C, Zou Z, Hu Z, Fu Z, Li W, Pan S, Zhang Y, Zhang H, Yu Z, et al. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: tunable activity and selectivity via N,P co-doping. Journal of Catalysis, 2023, 421: 65–76

    Article  CAS  Google Scholar 

  164. Bustamante T M, Fraga M A, Fierro J L G, Campos C H, Pecchi G. Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338

    Article  CAS  Google Scholar 

  165. Cui H, Liu S, Lv Y, Wu S, Wang L, Hao F, Liu P, Xiong W, Luo H. Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481

    Article  CAS  Google Scholar 

  166. Zhao J, Malgras V, Na J, Liang R, Cai Y, Kang Y, Alshehri A A, Alzahrani K A, Alghamdi Y G, Asahi T, et al. Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chemical Engineering Journal, 2020, 398: 125564

    Article  CAS  Google Scholar 

  167. Li H, Liu J, Xie S, Qiao M, Dai W, Li H. Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110

    Article  CAS  Google Scholar 

  168. Mo M, Tang J, Zou L, Xun Y, Guan H. Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pei Y, Guo P, Qiao M, Li H, Wei S, He H, Fan K. The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310

    Article  CAS  Google Scholar 

  170. Kurokawa H, Mori K, Yoshida K, Ohshima M A, Sugiyama K, Miura H. The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769

    Article  CAS  Google Scholar 

  171. Kouachi K, Lafaye G, Especel C, Cherifi O, Marécot P. Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149

    Article  CAS  Google Scholar 

  172. Di X, Lafaye G, Especel C, Epron F, Qi J, Li C, Liang C. Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823

    Article  CAS  PubMed  Google Scholar 

  173. Zhou J, Yang Y, Li C, Zhang S, Chen Y, Shi S, Wei M. Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832

    Article  CAS  Google Scholar 

  174. Liu Y J, Zhang D H, Li X C, Deng S J, Zhao D, Zhang N, Chen C. Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387

    Article  CAS  Google Scholar 

  175. Tian Y, Feng Y, Li Z, Fan Y, Sperry J, Sun Y, Yang S, Tang X, Lin L, Zeng X. Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981

    Article  CAS  Google Scholar 

  176. Liu W, Hua J, Su S, Yang X. A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647

    Article  CAS  Google Scholar 

  177. Ishikawa H, Sheng M, Nakata A, Nakajima K, Yamazoe S, Yamasaki J, Yamaguchi S, Mizugaki T, Mitsudome T. Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757

    Article  CAS  Google Scholar 

  178. Xu L, Nie R, Lyu X, Wang J, Lu X. Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205

    Article  CAS  Google Scholar 

  179. Jiang P, Li X, Gao W, Wang X, Tang Y, Lan K, Wang B, Li R. Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9

    Article  CAS  Google Scholar 

  180. Gong W, Chen C, Zhang H, Wang G, Zhao H. Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514

    Article  CAS  Google Scholar 

  181. Li S, Fan Y, Wu C, Zhuang C, Wang Y, Li X, Zhao J, Zheng Z. Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517

    Article  CAS  Google Scholar 

  182. Gong W B, Han M M, Chen C, Lin Y, Wang G H, Zhang H M, Zhao H J. CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024

    Article  CAS  Google Scholar 

  183. Tian Y, Chen B, Yu Z, Huang R, Yan G, Li Z, Sun Y, Yang S, Tang X, Lin L, et al. Efficient catalytic hydrogenation of furfural over cobalt-based catalysts with adjustable acidity. Chemical Engineering Science, 2023, 270: 118527

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21968007), the Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA297007), the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2023K002), and Special funding for ‘Guangxi Bagui Scholars’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuzeng Qin or Hongbing Ji.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Su, T., Qin, Z. et al. Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde. Front. Chem. Sci. Eng. 18, 64 (2024). https://doi.org/10.1007/s11705-024-2423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2423-3

Keywords

Navigation