Skip to main content
Log in

Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Reducing the production costs of clean energy carriers such as hydrogen through scalable water electrolysis is a potential solution for advancing the hydrogen economy. Among the various material candidates, our group demonstrated transition-metal-based materials with tunable electronic characteristics, various phases, and earth-abundance. Herein, electrochemical water oxidation using Cu2Se-V2O5 as a non-precious metallic electrocatalyst via a hydrothermal approach is reported. The water-splitting performance of all the fabricated electrocatalysts was evaluated after direct growth on a stainless-steel substrate. The electrochemically tuned Cu2Se-V2O5 catalyst exhibited a reduced overpotential of 128 mV and provided a reduced Tafel slope of 57 mV·dec1 to meet the maximum current density of 250 mA·cm2. The optimized strategy for interfacial coupling of the fabricated Cu2Se-V2O5 catalyst resulted in a porous structure with accessible active sites, which enabled adsorption of the intermediates and afforded an effective charge transfer rate for promoting the oxygen evolution reaction. Furthermore, the combined effect of the catalyst components provided long-term stability for over 110 h in an alkaline solution, which makes the catalyst promising for large-scale practical applications. The aforementioned advantages of the composite catalyst overcome the limitations of low conductivity, agglomeration, and poor stability of the pure catalysts (Cu2Se and V2O5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McHugh P J, Stergiou A D, Symes M D. Decoupled electrochemical water splitting: from fundamentals to applications. Advanced Energy Materials, 2020, 10(44): 2002453

    Article  CAS  Google Scholar 

  2. Lee J E, Jeon K J, Show P L, Lee I H, Jung S C, Choi Y J, Rhee G H, Lin K A, Park Y K. Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts. Fuel, 2022, 308: 122048

    Article  CAS  Google Scholar 

  3. Li M, Feng L. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2022, 41(1): 2201019–2201024

    CAS  Google Scholar 

  4. Chen X, Qiu Z, Xing H, Fei S, Li J, Ma L, Li Y, Liu D. Sulfur-doping/leaching induced structural transformation toward boosting electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 305: 121030

    Article  CAS  Google Scholar 

  5. Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. Journal of Alloys and Compounds, 2020, 819: 153346

    Article  CAS  Google Scholar 

  6. Sabir A S, Pervaiz E, Khosa R, Sohail U. An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13(8): 4963–4993

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peng X, Jin X, Gao B, Liu Z, Chu P K. Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. Journal of Catalysis, 2021, 398: 54–66

    Article  CAS  Google Scholar 

  8. Xu Y, Hao X, Zhang X, Wang T, Hu Z, Chen Y, Feng X, Liu W, Hao F, Kong X, He C, Ma S, Xu B. Increasing oxygen vacancies in CeO2 nanocrystals by Ni doping and reduced graphene oxide decoration towards electrocatalytic hydrogen evolution. CrystEngComm, 2022, 24(18): 3369–3379

    Article  CAS  Google Scholar 

  9. Skoda D, Kazda T, Hanulikova B, Cech O, Vykoukal V, Michalicka J, Cudek P, Kuritka I. Vanadium metal-organic frameworks derived VOx/carbon nano-sheets and paperclip-like VOx/nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes. Materials Chemistry and Physics, 2022, 278: 125584

    Article  CAS  Google Scholar 

  10. Yang J, Xuan H, Yang J, Liang X, Li Y, Yang J, Han P. Bimetallic NiMo oxides coupled with 3D CuxO nanorods for efficient overall water splitting. Journal of Alloys and Compounds, 2023, 934: 167908

    Article  CAS  Google Scholar 

  11. Reddy I N, Sreedhar A, Reddy C V, Cho M, Kim D, Shim J. Facile synthesis and characterization of V2O5 nanobelt bundles containing plasmonic Ag for photoelectrochemical water splitting under visible light irradiation. Ceramics International, 2019, 45(17): 23333–23340

    Article  CAS  Google Scholar 

  12. Dong R, Song Y, Yang D, Shi H Y, Qin Z, Zhang M, Guo D, Sun X, Liu X X. Electrochemical: in situ construction of vanadium oxide heterostructures with boosted pseudocapacitive charge storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(3): 1176–1183

    Article  CAS  Google Scholar 

  13. Yu J, Guo Y, Miao S, Ni M, Zhou W, Shao Z. Spherical ruthenium disulfide-sulfur-doped graphene composite as an efficient hydrogen evolution electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10(40): 34098–34107

    Article  CAS  Google Scholar 

  14. Niu Y, Li W, Wu X, Feng B, Yu Y, Hu W, Li C M. Amorphous nickel sulfide nanosheets with embedded vanadium oxide nanocrystals on nickel foam for efficient electrochemical water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(17): 10534–10542

    Article  CAS  Google Scholar 

  15. Zhang J, Zhang H, Liu M, Xu Q, Jiang H, Li C. Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chemical Engineering Science, 2020, 227: 115915

    Article  CAS  Google Scholar 

  16. Jansi R B, Ravi G, Yuvakkumar R. Solvothermal optimization of V2O5 nanostructures for electrochemical energy production. AIP Conference Proceedings, 2020, 2265: 2–6

    Google Scholar 

  17. Yang H, Zhou Z, Yu H, Wen H, Yang R, Peng S, Sun M, Yu L. Alkali treatment of layered double hydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2023, 636(100): 11–20

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zhao Y, Wei S, Pan K, Dong Z, Zhang B, Wu H H, Zhang Q, Lin J, Pang H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421(P1): 129645

    Article  CAS  Google Scholar 

  19. Liu B, Ning L, Zhao H, Zhang C, Yang H, Liu S. Visible-light photocatalysis in Cu2Se nanowires with exposed {111} facets and charge separation between (111) and (111) polar surfaces. Physical Chemistry Chemical Physics, 2015, 17(20): 13280–13289

    Article  CAS  PubMed  Google Scholar 

  20. Liu C S, Xue S L. Efficient photo-assisted Fenton-like reaction of yolk-shell CuSe(Cu2Se)/g-C3N4 heterojunctions for methylene blue degradation. RSC Advances, 2023, 13(13): 8464–8475

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu P, Wang G, Miao C, Cheng K, Ye K, Zhu K, Yan J, Cao D, Zhang X. Controllable one-pot synthesis of emerging β-Cu2Se nanowire freely standing on nickel foam for high electrochemical energy storage performance. Applied Surface Science, 2019, 463: 82–90

    Article  ADS  CAS  Google Scholar 

  22. Munawar T, Bashir A, Nadeem M S, Mukhtar F, Manzoor S, Ashiq M N, Khan S A, Koc M, Iqbal F. Scalable synthesis of MOF-derived Nd2O3@C and V2O5@C nanohybrid: efficient electrocatalyst for OER in alkaline medium. Fuel, 2024, 355: 129485

    Article  CAS  Google Scholar 

  23. Munawar T, Bashir A, Sardar S, Nadeem M S, Mukhtar F, Manzoor S, Ashiq M N, Khan S A, Koc M, Iqbal F. Electrochemical behavior of V/Ce co-doped carbon shell-coated NiO nanocomposite for alkaline OER and supercapacitor applications. Journal of Energy Storage, 2024, 76: 109556

    Article  Google Scholar 

  24. Munawar T, Sardar S, Mukhtar F, Nadeem M S, Manzoor S, Ashiq M N, Khan S A, Koc M, Iqbal F. Fabrication of fullerene-supported La2O3-C60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Physical Chemistry Chemical Physics, 2023, 25(9): 7010–7027

    Article  CAS  PubMed  Google Scholar 

  25. Munawar T, Iqbal F, Yasmeen S, Mahmood K, Hussain A. Multi metal oxide NiO-CdO-ZnO nanocomposite—synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceramics International, 2020, 46(2): 2421–2437

    Article  CAS  Google Scholar 

  26. Muthukannan A, Sivakumar G, Mohanraj K. Influence of equimolar concentration on structural and optical properties of binary selenides nanoparticles. Particulate Science and Technology, 2014, 32(4): 392–398

    Article  CAS  Google Scholar 

  27. Shukla P, Shukla J K. Facile sol-gel synthesis and enhanced photocatalytic activity of the V2O5-ZnO nanoflakes. Journal of Science. Advanced Materials and Devices, 2018, 3(4): 452–455

    Article  Google Scholar 

  28. Sajid M M, Shad N A, Javed Y, Khan S B, Zhang Z, Amin N, Zhai H. Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surfaces and Interfaces, 2020, 19: 100502

    Article  CAS  Google Scholar 

  29. Sabbaghi A A, Dastangoo H, Asadpour-Zeynali K. A deep eutectic solvent-assisted electrochemical synthesis of TGA capped CdSe@Cu2Se core-shell quantum dots on the graphene-modified electrode as a catalytic platform for the determination of pyrazinamide. Talanta, 2023, 253: 123928

    Article  CAS  PubMed  Google Scholar 

  30. Munawar T, Bashir A, Nadeem M S, Mukhtar F, Manzoor S, Ashiq M N, Khan S A, Koc M, Iqbal F. Electrochemical performance evaluation of bimetallic sulfide nanocomposite with fullerene (CeNdS/C60) for efficient oxygen evolution reaction (OER). Energy & Fuels, 2023, 37(2): 1370–1386

    Article  CAS  Google Scholar 

  31. Malavekar D B, Kale S B, Shelke H D, Pathan H M, Lokhande C D. Efficient electrochemical water splitting through self-supported copper selenide nanosheets on Cu foil: effect of immersion time. Energy Technology, 2023, 11(6): 2201300

    Article  CAS  Google Scholar 

  32. Wang X, Zhou Y, Tuo Y, Lin Y, Yan Y, Chen C, Li Y, Zhang J. Synthesis and identifying the active site of Cu2Se@CoSe nanocomposite for enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 320: 134589

    Article  CAS  Google Scholar 

  33. Wang C, Jiu H, Zhang L, Song W, Zhang Y, Wei H, Xu Q, Che S, Guo Z, Qin Y. Bifunctional CuCo2O4/CoOOH as a synergistic catalyst supported on nickel foam for alkaline overall water splitting. Journal of Alloys and Compounds, 2022, 929: 167367

    Article  CAS  Google Scholar 

  34. Yang L, Lu D, Zhu L, Xia D. Construction of Mo doped CoMoCH-Cu2SeS/NF composite electrocatalyst with high catalytic activity and corrosion resistance in seawater electrolysis: a case study on cleaner energy. Journal of Cleaner Production, 2023, 413: 137462

    Article  CAS  Google Scholar 

  35. An C, Wang Y, Huang R, Li Y, Wang C, Wu S, Gao L, Zhu C, Deng Q, Hu N. Lattice-matched Cu3P/Cu2Se heterojunction catalysts for efficient hydrogen evolution reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2023, 667: 131360

    Article  CAS  Google Scholar 

  36. Qi H, Zhang P, Wang H, Cui Y, Liu X, She X, Wen Y, Zhan T. Cu2Se nanowires shelled with NiFe layered double hydroxide nanosheets for overall water-splitting. Journal of Colloid and Interface Science, 2021, 599: 370–380

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Yang L, Zhao Y, Zhu L, Xia D. Rational construction of grille structured P-CoZnO-Cu2SeS/NF composite electrocatalyst for boosting seawater electrolysis and corrosion resistance. Applied Surface Science, 2023, 631: 157541

    Article  CAS  Google Scholar 

  38. Zhou Y, Chen Y, Wei M, Fan H, Liu X, Liu Q, Liu Y, Cao J, Yang L. 2D MOF-derived porous NiCoSe nanosheet arrays on Ni foam for overall water splitting. CrystEngComm, 2021, 23(1): 69–81

    Article  CAS  Google Scholar 

  39. Ray C, Lee S C, Jin B, Chung K Y, Guo S, Zhang S, Zhang K, Park J H, Jun S C. Cu2O-Cu2Se mixed-phase nanoflake arrays: pH-universal hydrogen evolution reactions with ultralow overpotential. ChemElectroChem, 2019, 6(19): 5014–5021

    Article  CAS  Google Scholar 

  40. Yang B, Yang J, Huang Z, Qin L, Lin H, Li Q. Green fabrication of large-size Cu2Se hexagonal sheets with visible light photocatalytic activity. Applied Surface Science, 2021, 535: 147712

    Article  CAS  Google Scholar 

  41. Shinde S K, Ghodake G S, Dubal D P, Patel R V, Saratale R G, Kim D Y, Maile N C, Koli R R, Dhaygude H D, Fulari V J. Electrochemical synthesis: monoclinic Cu2Se nano-dendrites with high performance for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 271–279

    Article  CAS  Google Scholar 

  42. Ali A, Cung T N D, Cho K Y, Oh W C. A simple ultrasonic-synthetic route of Cu2Se-graphene-TiO2 ternary composites for carbon dioxide conversion processes. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(12): 827–836

    Article  ADS  CAS  Google Scholar 

  43. Hou T F, Johar M A, Boppella R, Hassan M A, Patil S J, Ryu S W, Lee D W. Vertically aligned one-dimensional ZnO/V2O5 core-shell hetero-nanostructure for photoelectrochemical water splitting. Journal of Energy Chemistry, 2020, 49: 262–274

    Article  Google Scholar 

  44. Yang Z, Xie X, Zhang Z, Yang J, Yu C, Dong S, Xiang M, Qin H. NiS2@V2O5/VS2 ternary heterojunction for a high-performance electrocatalyst in overall water splitting. International Journal of Hydrogen Energy, 2022, 47(64): 27338–27346

    Article  CAS  Google Scholar 

  45. Wang J, Tran D T, Chang K, Prabhakaran S, Kim D H, Kim N H, Lee J H. Bifunctional catalyst derived from sulfur-doped VMoOx nanolayer shelled Co nanosheets for efficient water splitting. ACS Applied Materials & Interfaces, 2021, 13(36): 42944–42956

    Article  CAS  Google Scholar 

  46. Ji S M, Muthurasu A, Chhetri K, Yong K H. Metal-organic framework assisted vanadium oxide nanorods as efficient electrode materials for water oxidation. Journal of Colloid and Interface Science, 2022, 618: 475–482

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Shi W, Lian J. Facile synthesis of copper selenide with fluffy intersected-nanosheets decorating nanotubes structure for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44(41): 22983–22990

    Article  CAS  Google Scholar 

  48. Nisar L, Sadaqat M, Hassan A, Babar N U A, Shah A, Najam-Ul-Haq M, Ashiq M N, Ehsan M F, Joya K S. Ultrathin CoTe nanoflakes electrode demonstrating low overpotential for overall water splitting. Fuel, 2020, 280: 118666

    Article  CAS  Google Scholar 

  49. Arsalan M, Babar N U A, Sadiqa A, Mansha S, Baig N, Nisar L, Ashiq M N, Saleh T A, Joya K S. Surface-assembled Fe-oxide colloidal nanoparticles for high performance electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2021, 46(7): 5207–5222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K M Batoo expresses thanks to the Researchers Supporting Project (Grant No. RSP2024R148) and King Saud University (Riyadh, Saudi Arabia) for their financial support. The authors also acknowledge assistance from Yahya Zakaria at the Core Laboratories at the Qatar Environment and Janarthanan Ponraj at the Energy Research Institute (QEERI), Hamad Bin Khalifa University, with XPS and TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Iqbal.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, T., Bashir, A., Batoo, K.M. et al. Construction of robust and durable Cu2Se-V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction. Front. Chem. Sci. Eng. 18, 65 (2024). https://doi.org/10.1007/s11705-024-2420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2420-6

Keywords

Navigation