Skip to main content
Log in

Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

With regard to green chemistry and sustainable development, the fixation of CO2 into epoxides to form cyclic carbonates is an attractive and promising pathway for CO2 utilization. Metal oxides, renowned as promising eco-friendly catalysts for industrial production, are often undervalued in terms of their impact on the CO2 addition reaction. In this work, we successfully developed ZnO nanoplates with (002) surfaces and ZnO nanorods with (100) surfaces via morphology-oriented regulation to explore the effect of crystal faces on CO2 cycloaddition. The quantitative data obtained from electron paramagnetic resonance spectroscopy indicated that the concentration of oxygen vacancies on the ZnO nanoplate surfaces was more than twice that on the ZnO nanorod surfaces. Density functional theory calculations suggested that the (002) surfaces have lower adsorption energies for CO2 and epichlorohydrin than the (100) surfaces. As a result, the yield of cyclochloropropene carbonate on the ZnO nanoplates (64.7%) was much greater than that on the ZnO nanorods (42.3%). Further evaluation of the reused catalysts revealed that the decrease in the oxygen vacancy concentration was the primary factor contributing to the decrease in catalytic performance. Based on these findings, a possible catalytic mechanism for CO2 cycloaddition with epichlorohydrin was proposed. This work provides a new idea for the controllable preparation of high-performance ZnO catalysts for the synthesis of cyclic carbonates from CO2 and epoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb T J, Winkler C K, Tinzl M, Glueck S M. Enzymatic conversion of CO2: from natural to artificial utilization. Chemical Reviews, 2023, 123(9): 5702–5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ren J, Lou H, Xu N, Zeng F, Pei G, Wang Z. Methanation of CO/CO2 for power to methane process: fundamentals, status, and perspectives. Journal of Energy Chemistry, 2023, 80: 182–206

    Article  CAS  Google Scholar 

  3. Liu X, Bai S, Zhuang H, Yan Z. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6(1): 47–52

    Article  CAS  Google Scholar 

  4. Zhang X, Wang J, Song Z, Zhao X, Sun J, Mao Y, Wang W. Co3O4–CeO2 for enhanced syngas by low-temperature methane conversion with C utilization via a catalytic chemical looping process. Fuel Processing Technology, 2023, 245: 107741

    Article  CAS  Google Scholar 

  5. Liu S, Zhao Q, Han X, Wei C, Liang H, Wang Y, Huang S, Ma X. Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303

    Article  CAS  Google Scholar 

  6. Kilic A, Sobay B, Aytar E, Söylemez R. Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy & Fuels, 2020, 4(11): 5682–5696

    Article  CAS  Google Scholar 

  7. Li J, Yue C, Ji W, Feng B, Wang M Y, Ma X. Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights. Frontiers of Chemical Science and Engineering, 2023, 17(12): 1879–1894

    Article  CAS  Google Scholar 

  8. Zeng Y Y, Qiao L Y, Zong S S, Guo R, Cheng J K, Cao X Y, Zhou Z F, Fan M H, Yao Y G. Dispersed Pd/alumina catalyst with finite iodine entry for boosted CO purification and dimethyl carbonate synthesis. Chemical Engineering Journal, 2023, 466: 143348

    Article  CAS  Google Scholar 

  9. Kilic A, Yasar E, Aytar E. Neutral boron [(L1–3)BPh2] and cationic charged boron [(L1a–3a)BPh2] complexes for chemical CO2 conversion to obtain cyclic carbonates under ambient conditions. Sustainable Energy & Fuels, 2019, 3(4): 1066–1077

    Article  CAS  Google Scholar 

  10. Andrea K A, Kerton F M. Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates. ACS Catalysis, 2019, 9(3): 1799–1809

    Article  CAS  Google Scholar 

  11. Ansari I, Singh P, Mittal A, Mahato R I, Chitkara D. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275: 120953

    Article  CAS  PubMed  Google Scholar 

  12. Su C C, He M, Amine R, Chen Z, Sahore R, Dietz Rago N, Amine K. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17: 284–292

    Article  Google Scholar 

  13. Wu K, Su T, Hao D, Liao W, Zhao Y, Ren W, Deng C, Lu H. Choline chloride-based deep eutectic solvents for efficient cycloaddition of CO2 with propylene oxide. Chemical Communications, 2018, 54(69): 9579–9582

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Liu G, Kim S K, Bowen K H, Zhang X. Gas-phase CO2 activation with single electrons, metal atoms, clusters, and molecules. Journal of Energy Chemistry, 2021, 63: 130–137

    Article  CAS  Google Scholar 

  15. Wang P, Lv Q, Tao Y, Cheng L, Li R, Jiao Y, Fang C, Li H, Geng C, Sun C, et al. One-pot efficient fixation of low-concentration CO2 into cyclic carbonate by mesoporous pyridine-functionalized binuclear poly(ionic liquid)s. Molecular Catalysis, 2023, 544: 113157

    Article  CAS  Google Scholar 

  16. Alhafez A, Aytar E, Kilic A. Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts. Journal of CO2 Utilization, 2022, 63: 102129

    Article  CAS  Google Scholar 

  17. Kilic A, Alhafez A, Aytar E, Soylemez R. The sustainable catalytic conversion of CO2 into value-added chemicals by using cobaloxime-based double complex salts as efficient and solventfree catalysts. Inorganica Chimica Acta, 2023, 554: 121547

    Article  CAS  Google Scholar 

  18. Chen Y, Yu J, Yang Y, Huo F, Li C. A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: reaction kinetics, mass transfer, and process optimization. Chemical Engineering Journal, 2023, 455: 140670

    Article  CAS  Google Scholar 

  19. Aggrawal S, Sharma R, Mohanty P. CuO immobilized paper matrices: a green catalyst for conversion of CO2 to cyclic carbonates. Journal of CO2 Utilization, 2021, 46: 101466

    Article  CAS  Google Scholar 

  20. Shen Q, Yan H, Yuan X, Li R, Kong D, Zhang W, Zhang H, Liu Y, Chen X, Feng X, et al. Tailoring morphology of MgO catalyst for the enhanced coupling reaction of CO2 and glycerol to glycerol carbonate. Fuel, 2023, 335: 126972

    Article  CAS  Google Scholar 

  21. Dai W, Luo S, Yin S, Au C. A mini review on chemical fixation of CO2: absorption and catalytic conversion into cyclic carbonates. Frontiers of Chemical Engineering in China, 2010, 4(2): 163–171

    Article  CAS  Google Scholar 

  22. Zhong S, Liang L, Liu M, Liu B, Sun J. DMF and mesoporous Zn/SBA-15 as synergistic catalysts for the cycloaddition of CO2 to propylene oxide. Journal of CO2 Utilization, 2015, 9: 58–65

    Article  CAS  Google Scholar 

  23. Zhang H, Si S, Zhai G, Li Y, Liu Y, Cheng H, Wang Z, Wang P, Zheng Z, Dai Y, et al. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Applied Catalysis B: Environmental, 2023, 337: 122909

    Article  CAS  Google Scholar 

  24. Cheng R, Wang A, Sang S, Liang H, Liu S, Tsiakaras P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: an economic and ecofriendly choice. Chemical Engineering Journal, 2023, 466: 142982

    Article  CAS  Google Scholar 

  25. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications, 1997, 12(12): 1129–1130

    Article  Google Scholar 

  26. Sahoo A, Chowdhury A H, Singha P, Banerjee A, Islam S M, Bala T. Morphology of ZnO triggered versatile catalytic reactions towards CO2 fixation and acylation of amines at optimized reaction conditions. Molecular Catalysis, 2020, 493: 111070

    Article  CAS  Google Scholar 

  27. Dai W, Zou M, Long J, Li B, Zhang S, Yang L, Wang D, Mao P, Luo S, Luo X. Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: an acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Applied Surface Science, 2021, 540: 148311

    Article  CAS  Google Scholar 

  28. Zhang T T, Zhang B S, Li L, Zhao N, Xiao F K. Zn–Mg mixed oxide as high-efficiency catalyst for the synthesis of propylene carbonate by urea alcoholysis. Catalysis Communications, 2015, 66: 38–41

    Article  CAS  Google Scholar 

  29. Park C, Park J E, Choi H C. Crystallization-induced properties from morphology-controlled organic crystals. Accounts of Chemical Research, 2014, 47(8): 2353–2364

    Article  CAS  PubMed  Google Scholar 

  30. Martínez-Suárez L, Siemer N, Frenzel J, Marx D. Reaction network of methanol synthesis over Cu/ZnO nanocatalysts. ACS Catalysis, 2015, 5(7): 4201–4218

    Article  Google Scholar 

  31. Chen Y, Dai Q, Zhang Q, Huang Y. Precisely deposited Pd on ZnO (002) surfacets derived from complex reduction strategy for methanol steam reforming. International Journal of Hydrogen Energy, 2022, 47(33): 14869–14883

    Article  CAS  Google Scholar 

  32. Goktas A, Modanlı S, Tumbul A, Kilic A. Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 2022, 893: 162334

    Article  CAS  Google Scholar 

  33. Tumbul A, Aslan F, Demirozu S, Goktas A, Kilic A, Durgun M, Zarbali M Z. Solution processed boron doped ZnO thin films: influence of different boron complexes. Materials Research Express, 2018, 6(3): 035903

    Article  Google Scholar 

  34. Mclaren A, Valdes-Solis T, Li G, Tsang S C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society, 2009, 131(35): 12540–12541

    Article  CAS  PubMed  Google Scholar 

  35. Chen H, Cui H, Lv Y, Liu P, Hao F, Xiong W, Luo H. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: effects of ZnO morphology and oxygen vacancy. Fuel, 2022, 314: 123035

    Article  CAS  Google Scholar 

  36. Chai M Q, Tan Y, Pei G X, Li L, Zhang L, Liu X Y, Wang A, Zhang T. Crystal plane effect of ZnO on the catalytic activity of gold nanoparticles for the acetylene hydrogenation reaction. Journal of Physical Chemistry C, 2017, 121(36): 19727–19734

    Article  CAS  Google Scholar 

  37. Liu W, Liu H, Liu Y, Dong Z, Luo L. Surface plane effect of ZnO on the catalytic performance of Au/ZnO for the CO oxidation reaction. Journal of Physical Chemistry C, 2022, 126(33): 14155–14162

    Article  CAS  Google Scholar 

  38. Iglesias-Juez A, Viñes F, Lamiel García O, Fernández García M, Illas F. Morphology effects in photoactive ZnO nanostructures: photooxidative activity of polar surfaces. Journal of Materials Chemistry A, 2015, 3(16): 8782–8792

    Article  CAS  Google Scholar 

  39. Wu G, Zhao G, Sun J, Cao X, He Y, Feng J, Li D. The effect of oxygen vacancies in ZnO at an Au/ZnO interface on its catalytic selective oxidation of glycerol. Journal of Catalysis, 2019, 377: 271–282

    Article  CAS  Google Scholar 

  40. Ghosh M, Ghosh S, Seibt M, Rao K Y, Peretzki P, Mohan Rao G. Ferroelectric origin in one-dimensional undoped ZnO towards high electromechanical response. CrystEngComm, 2016, 18(4): 622–630

    Article  CAS  Google Scholar 

  41. Niu L, Hong S, Wang M. Properties of ZnO with oxygen vacancies and its application in humidity sensor. Journal of Electronic Materials, 2021, 50(8): 4480–4487

    Article  CAS  Google Scholar 

  42. Zhu M, Zhang Z, Zhong M, Tariq M, Li Y, Li W, Jin H, Skotnicova K, Li Y. Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceramics International, 2017, 43(3): 3166–3170

    Article  CAS  Google Scholar 

  43. Huang C, Wen J, Sun Y, Zhang M, Bao Y, Zhang Y, Liang L, Fu M, Wu J, Ye D, et al. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: effects of reducing gas induced Cu nanoparticle morphology. Chemical Engineering Journal, 2019, 374: 221–230

    Article  CAS  Google Scholar 

  44. Wang J, Xia Y, Dong Y, Chen R, Xiang L, Komarneni S. Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2016, 192: 8–16

    Article  CAS  Google Scholar 

  45. Ren Q, Yang K, Liu F, Yao M, Ma J, Geng S, Cao J. Role of the structure and morphology of zirconia in ZnO/ZrO2 catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 2023, 547: 113280

    Article  CAS  Google Scholar 

  46. Liu M H, Chen Y W, Lin T S, Mou C Y. Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO. ACS Catalysis, 2018, 8(8): 6862–6869

    Article  CAS  Google Scholar 

  47. Li G R, Hu T, Pan G L, Yan T Y, Gao X P, Zhu H Y. Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. Journal of Physical Chemistry C, 2008, 112(31): 11859–11864

    Article  CAS  Google Scholar 

  48. Zhou J, Yang S, Wan W, Chen L, Chen J. Synergistic catalysis of mesoporous Cu/Co3O4 and surface oxygen vacancy for CO2 fixation to carbamates. Journal of Catalysis, 2023, 418: 178–189

    Article  CAS  Google Scholar 

  49. Lu S, Song H, Xiao Y, Qadir K, Li Y, Li Y, He G. Promoted catalytic activity of CO oxidation at low temperatures by tuning ZnO morphology for optimized CuO/ZnO catalysts. Colloid and Interface Science Communications, 2023, 52: 100698

    Article  CAS  Google Scholar 

  50. Hsieh P T, Chen Y C, Kao K S, Wang C M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A, 2007, 90(2): 317–321

    Article  Google Scholar 

  51. Kilic A, Aytar E, Beyazsakal L. A novel dopamine-based boronate esters with the organic base as highly efficient, stable, and green catalysts for the conversion of CO2 with epoxides to cyclic carbonates. Energy Technology, 2021, 9(9): 2100478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22008177), the Natural Science Foundation of Inner Mongolia (Grant Nos. 2023MS02004 and 2023MS02011), the Foundation of Inner Mongolia Education Department (Grant No. JY20220266), and the Program for Young Talents of Science and Technology of Inner Mongolia (Grant No. NJYT23040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Li, Y., Xu, Y. et al. Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts. Front. Chem. Sci. Eng. 18, 53 (2024). https://doi.org/10.1007/s11705-024-2412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2412-6

Keywords

Navigation