Skip to main content
Log in

Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The aluminum-water system is a promising propellant due to high energy and low signal characteristics, and the gel form is easier to store and utilize. In this work, hydrogels of water and aluminum particles were prepared using the low-molecular-weight gellant agarose. The various physical properties of gel systems, including the water loss rate, phase transition temperature, and centrifugal stability at different gellant and aluminum contents, were examined. Rheological properties were assessed through shear thinning tests, thixotropy tests, strain sweep analysis, and frequency sweep experiments. The microstructure of the gel was obtained through scanning electron microscopy images. The results show that the aluminum-hydrogel network structure is composed of micron-scale aluminum and agarose nanosheets, and the unique micro-nanostructure endows the gel with excellent mechanical strength and thermal stability, which improve with increasing gellant and aluminum contents. Notably, the gel with 2% agarose and 20% aluminum had the best performance; the storage modulus reached 90647 Pa, which was within the linear viscoelastic region, and the maximum withstand pressure was 111.2 kPa, which was 118.8% greater than that of the pure hydrogel. Additionally, the gel demonstrates remarkable shear thinning behavior and can undergo gel-sol transformation upon shearing or heating to exceeding 114 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Y L, Ye Z L, Wan X K, Yao G, Duan J Y, Liu J J, Yao M D, Sun X, Deng Z X, Shen K, et al. Systematic mining and evaluation of the sesquiterpene skeletons as high energy aviation fuel molecules. Advanced Science, 2023, 10(23): 2300889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nie J R, Jia T H, Pan L, Zhang X W, Zou J J. Development of high-energy-density liquid aerospace fuel: a perspective. Transactions of Tianjin University, 2022, 28(1): 1–5

    Article  CAS  Google Scholar 

  3. Tang P F, Yang B, Li R, Wang Y C, Li X D, Yang G C. Ti3C2 MXene: a reactive combustion catalyst for efficient burning rate control of ammonium perchlorate based solid propellant. Carbon, 2022, 186: 678–687

    Article  CAS  Google Scholar 

  4. Cao J W, Zhang Y C, Pan L, Shi C X, Zhang X W, Zou J J. Synthesis and characterization of gelled high-density fuels with low-molecular mass gellant. Propellants Explosives Pyrotechnics, 2020, 45(7): 1018–1026

    Article  CAS  Google Scholar 

  5. Lysien K, Stolarczyk A, Jarosz T. Solid propellant formulations: a review of recent progress and utilized components. Materials, 2021, 14(21): 6657

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shorunov S V, Zarezin D P, Samoilov V O, Rudakova M A, Borisov R S, Maximov A L, Bermeshev M V. Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene. Fuel, 2021, 283: 118935

    Article  CAS  Google Scholar 

  7. Moghaddam A S, Rezaei M R, Tavangar S. Experimental investigation of characteristic length influence on a combustion chamber performance with liquid and gelled UDMH/IRFNA bi-propellants. Propellants Explosives Pyrotechnics, 2019, 44(9): 1154–1159

    Article  CAS  Google Scholar 

  8. Zou J J, Zhang X W, Pan L. High-Energy-Density Fuels for Advanced Propulsion: Design and Synthesis. Hoboken, New Jersey: Wiley, 2021

    Google Scholar 

  9. Jyoti B V S, Baek S W. Rheological characterization of ethanolamine gel propellants. Journal of Energetic Materials, 2016, 34(3): 260–278

    Article  ADS  CAS  Google Scholar 

  10. Liu Y, Zhang H Z, Pan L, Xue K, Zhang X W, Zou J J. High-energy-density gelled fuels with high stability and shear thinning performance. Chinese Journal of Chemical Engineering, 2022, 43: 99–109

    Article  Google Scholar 

  11. Natan B, Hasan D. Advances in gel propulsion. Journal of Energetic Materials, 2019, 18(4): 303–323

    Google Scholar 

  12. Cao J W, Pan L, Zhang X W, Zou J J. Physicochemical and rheological properties of Al/JP-10 gelled fuel. Chinese Journal of Energetic Materials, 2020, 28(5): 382–390 (in Chinese)

    CAS  Google Scholar 

  13. Xue K, Cao J W, Pan L, Zhang X W, Zou J J. Review on design, preparation and performance characterization of gelled fuels for advanced propulsion. Frontiers of Chemical Science and Engineering, 2022, 16(6): 819–837

    Article  CAS  Google Scholar 

  14. Han L K, Wang R D, Chen W Y, Wang Z, Zhu X Y, Huang T Z. Preparation and combustion mechanism of boron-based high-energy fuels. Catalysts, 2023, 13(2): 378

    Article  CAS  Google Scholar 

  15. Glushkov D O, Paushkina K K, Pleshko A O, Yanovsky A O. Ignition and combustion behavior of gel fuel particles with metal and non-metal additives. Acta Astronautica, 2023, 202: 637–652

    Article  ADS  CAS  Google Scholar 

  16. Yang D L, Xia Z X, Huang L Y, Ma L K, Chen B B, Feng Y C. Synthesis of metallized kerosene gel and its characterization for propulsion applications. Fuel, 2020, 262: 116684

    Article  CAS  Google Scholar 

  17. Saberimoghaddam A, Emamifard Z, Mahdi Bahri Rasht Abadi M, Meyghani N. Investigation of the effective parameters on the preparation of the gelled IRFNA. Propellants Explosives Pyrotechnics, 2019, 44(12): 1621–1627

    Article  CAS  Google Scholar 

  18. Rahimi S, Hasan D, Peretz A. Development of laboratory-scale gel-propulsion technology. Journal of Propulsion and Power, 2004, 20(1): 93–100

    Article  CAS  Google Scholar 

  19. Wang F S, Chen J, Zhang T, Guan H S, Li H M. Experimental study on spray characteristics of ADN/water-based gel propellant with impinging jet injectors. Propellants, Explosives, Pyrotechnics, 2020, 45(9): 1357–1365

    Article  Google Scholar 

  20. Padwal M B, Natan B, Mishra D P. Gel propellants. Progress in Energy and Combustion Science, 2021, 83: 100885

    Article  Google Scholar 

  21. Guo X D, Li F S, Bian G Z, Liu G P. Coating treatment of Mg powders and their water reaction characteristics. Advanced Materials Research, 2013, 781–784: 2463–2470

    Article  Google Scholar 

  22. Bergthorson J M, Yavor Y, Palecka J, Georges W, Soo M, Vickery J, Goroshin S, Frost D L, Higgins A J. Metal-water combustion for clean propulsion and power generation. Applied Energy, 2017, 186: 13–27

    Article  ADS  CAS  Google Scholar 

  23. Ghedjatti I, Yuan S W, Wang H X. Energy generation from metal-water reaction for power systems, underwater and aerospace propulsion applications. In: 2019 16th International Bhurban Conference on Applied Sciences and Technology. New York: IEEE, 2019, 49–54

    Google Scholar 

  24. Nishii K, Mannami Y, Akiyama M, Murohara M, Hiroyuki K, Komurasaki K. Experimental study on bulk metal-water combustion for small spacecraft propulsion. In: AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: AIAA, 2020, 3744

    Google Scholar 

  25. Boryaev A A. Calculation and experimental estimation of the efficiency of using lithium, sodium, magnesium, and aluminum as fuels in hydro-reactive propellants. Thermal Science and Engineering Progress, 2021, 23: 100881

    Article  CAS  Google Scholar 

  26. Zou M, Yang R, Guo X, Cao C, Li J. Advances in aluminum/water propellants. Chinese Journal of Energetic Materials, 2007, 15(4): 421–424 (in Chinese)

    CAS  Google Scholar 

  27. Dong R K, Mei Z, Xu S Y, Zhao F Q, Ju X H, Ye C C. Molecular dynamics simulation on reaction and kinetics isotope effect of nano-aluminum and water. International Journal of Hydrogen Energy, 2019, 44(36): 19474–19483

    Article  CAS  Google Scholar 

  28. Murugesan R, Chakravarthy S R, Kandasamy J, Sarathi R. Experimental investigation on aluminum-based water ramjet for propelling high-speed underwater vehicles. Journal of Propulsion and Power, 2023, 39(6): 886–895

    Article  Google Scholar 

  29. Hahma A, Gany A, Palovuori K. Combustion of activated aluminum. Combustion and Flame, 2006, 145(3): 464–480

    Article  ADS  CAS  Google Scholar 

  30. Huang H T, Zou M S, Guo X Y, Yang R J, Li Y K. Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet. Combustion, Explosion, and Shock Waves, 2013, 49(5): 541–547

    Article  Google Scholar 

  31. Gautham M G, Ramakrishna P A. Propulsive performance of mechanically activated aluminum-water gelled composite propellant. Journal of Propulsion and Power, 2020, 36(2): 294–301

    Article  CAS  Google Scholar 

  32. Risha G A, Connell T L Jr, Yetter R A, Sundaram D S, Yang V. Combustion of frozen nanoaluminum and water mixtures. Journal of Propulsion and Power, 2014, 30(1): 133–142

    Article  CAS  Google Scholar 

  33. Gautham M G, Ramakrishna P A. Combustion characteristics of aluminum-water gelled composite propellant. Journal of Propulsion and Power, 2018, 34(5): 1345–1354

    Article  CAS  Google Scholar 

  34. Guo C, Li T, Zhao Y, Bao S, Zhang H, Wu R. Aluminum/water reaction mechanism of aluminum-based hydrogels. Chinese Journal of Energetic Materials, 2022, 30(6): 557–563 (in Chinese)

    CAS  Google Scholar 

  35. Nakayama A, Kakugo A, Gong J P, Osada Y, Takai M, Erata T, Kawano S. High mechanical strength double-network hydrogel with bacterial cellulose. Advanced Functional Materials, 2004, 14(11): 1124–1128

    Article  CAS  Google Scholar 

  36. Li L C, Zheng R L, Huang Y, Sun R Q. Self-sorting assembly in multicomponent self-assembled low molecular weight hydrogels. Progress in Chemistry, 2023, 35(2): 274–286

    CAS  Google Scholar 

  37. Espinosa-Andrews H, Velasquez-Ordonez C, Cervantes-Uc J M, Rodriguez-Rodriguez R. Water behavior, thermal, structural, and viscoelastic properties of physically cross-linked chitosan hydrogels produced by NaHCO3 as a crosslinking agent. Journal of Materials Science, 2023, 58(13): 6025–6037

    Article  ADS  CAS  Google Scholar 

  38. Yang H H, Zhao C C, Wang Y, Wang Y Y, Shi B F, Chen P F, Yan W. Progress in study on gel propellants and their rheological properties. Journal of Xi’an Jiaotong University, 2022, 56(5): 166–179 (in Chinese)

    Google Scholar 

  39. Horinaka J, Ogawa S. Cyclic deformation behavior of agarose hydrogels prepared at different gelation concentrations. International Journal of Biological Macromolecules, 2023, 248: 125904

    Article  CAS  PubMed  Google Scholar 

  40. Zheng J, Zhao C, Zhu L, Chen Q, Wang Q. One-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Advanced Materials, 2013, 25(30): 4171–4176

    Article  PubMed  Google Scholar 

  41. Chen A Q, Guan X D, Li X M, Zhang B H, Zhang B, Song J. Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance. Propellants Explosives Pyrotechnics, 2017, 42(9): 1007–1013

    Article  Google Scholar 

  42. Lin C, Li Y, Tang W, Zhou S, Rao X. Facile construction of bio-based supramolecular hydrogels from dehydroabietic acid with a tricyclic hydrophenanthrene skeleton and stabilized gel emulsions. Molecules, 2021, 26(21): 6526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sang Y, Liu M. Nanoarchitectonics through supramolecular gelation: formation and switching of diverse nanostructures. Molecular Systems Design & Engineering, 2019, 4(1): 11–28

    Article  CAS  Google Scholar 

  44. Zhang L M, Wu C X, Huang J Y, Peng X H, Chen P, Tang S Q. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydrate Polymers, 2012, 88(4): 1445–1452

    Article  CAS  Google Scholar 

  45. Liao J, Wang Y J, Hou B, Zhang J M, Huang H H. Nano-chitin reinforced agarose hydrogels: effects of nano-chitin addition and acidic gas-phase coagulation. Carbohydrate Polymers, 2023, 313: 120902

    Article  CAS  PubMed  Google Scholar 

  46. Wang S, Zhang R, Yang Y, Wu S, Cao Y, Lu A, Zhang L. Strength enhanced hydrogels constructed from agarose in alkali/urea aqueous solution and their application. Chemical Engineering Journal, 2018, 331: 177–184

    Article  CAS  Google Scholar 

  47. Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N. Nanostructured Al2O3-ZrO2 composite synthesized by sol-gel technique: powder processing and microstructure. Journal of Materials Science, 2007, 42(5): 1847–1855

    Article  ADS  CAS  Google Scholar 

  48. Jo H S, Kim H, Yoon S Y. Synthesis and characterization of mesoporous aluminum silicate and its adsorption for Pb(II) ions and methylene blue in aqueous solution. Materials, 2022, 15(10): 3562

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cao Q, Feng F, Wu X S. Time and temperature dependent constitutive equations modeling of RP-1 jet fuel gel. Chinese Journal of Energetic Materials, 2016, 24(6): 592–598 (in Chinese)

    CAS  Google Scholar 

  50. Qiu X P, Pang A M, Jin F, Wei W, Chen K H, Lu T J. Preparation and characterization of JP-10 gel propellants with tris-urea low-molecular mass gelators. Propellants Explosives Pyrotechnics, 2016, 41(2): 212–216

    Article  CAS  Google Scholar 

  51. Hu Y, Kim Y, Hong I, Kim M, Jung S. Fabrication of flexible pH-responsive agarose/succinoglycan hydrogels for controlled drug release. Polymers, 2021, 13(13): 2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jarosz A, Kapusta O, Gugala-Fekner D, Barczak M. Synthesis and characterization of agarose hydrogels for release of diclofenac sodium. Materials, 2023, 16(17): 6042

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dennis J D, Kubal T D, Campanella O, Son S F, Pourpoint T L. Rheological characterization of monomethyl hydrazine gels. Journal of Propulsion and Power, 2013, 29(2): 313–320

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Haihe Laboratory of Sustainable Chemical Transformations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Xue or Ji-Jun Zou.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Li, H., Zhang, H. et al. Micro-nanoarchitectonic of aluminum-hydrogel propellant with static stability and dynamic rheology. Front. Chem. Sci. Eng. 18, 43 (2024). https://doi.org/10.1007/s11705-024-2404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2404-6

Keywords

Navigation