Skip to main content
Log in

A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Methanol-to-olefins, as a promising non-oil pathway for the synthesis of light olefins, has been successfully industrialized. The accurate prediction of process variables can yield significant benefits for advanced process control and optimization. The challenge of this task is underscored by the failure of traditional methods in capturing the complex characteristics of industrial processes, such as high nonlinearities, dynamics, and data distribution shift caused by diverse operating conditions. In this paper, we propose a novel hybrid spatial-temporal deep learning prediction model to address these issues. Firstly, a unique data normalization technique called reversible instance normalization is employed to solve the problem of different data distributions. Subsequently, convolutional neural network integrated with the self-attention mechanism are utilized to extract the temporal patterns. Meanwhile, a multi-graph convolutional network is leveraged to model the spatial interactions. Afterward, the extracted temporal and spatial features are fused as input into a fully connected neural network to complete the prediction. Finally, the outputs are denormalized to obtain the ultimate results. The monitoring results of the dynamic trends of process variables in an actual industrial methanol-to-olefins process demonstrate that our model not only achieves superior prediction performance but also can reveal complex spatial-temporal relationships using the learned attention matrices and adjacency matrices, making the model more interpretable. Lastly, this model is deployed onto an end-to-end Industrial Internet Platform, which achieves effective practical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou J, Gao M, Zhang J, Liu W, Zhang T, Li H, Xu Z, Ye M, Liu Z. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nature Communications, 2021, 12(1): 17

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  2. Ye M, Tian P, Liu Z M. DMTO: a sustainable methanol-to-olefins technology. Engineering, 2021, 7(1): 17–21

    Article  Google Scholar 

  3. Li C Q, Chen Y Q, Shang Y L. A review of industrial big data for decision making in intelligent manufacturing. Engineering Science and Technology an International Journal, 2022, 29: 101021

    Article  Google Scholar 

  4. Pirdashti M, Curteanu S, Kamangar M H, Hassim M H, Khatami M A. Artificial neural networks: applications in chemical engineering. Reviews in Chemical Engineering, 2013, 29(4): 205–239

    Article  CAS  Google Scholar 

  5. Chiang L H, Braun B, Wang Z, Castillo I. Towards artificial intelligence at scale in the chemical industry. AIChE Journal, 2022, 68(6): e17644

    Article  ADS  CAS  Google Scholar 

  6. Zhu L T, Chen X Z, Ouyang B, Yan W C, Lei H, Chen Z, Luo Z H. Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors. Industrial & Engineering Chemistry Research, 2022, 61(28): 9901–9949

    Article  CAS  Google Scholar 

  7. Wang Z Q, Wang L, Yuan Z H, Chen B Z. Data-driven optimal operation of the industrial methanol to olefin process based on relevance vector machine. Chinese Journal of Chemical Engineering, 2021, 34: 106–115

    Article  ADS  CAS  Google Scholar 

  8. Zhang H L, Zhu A Q, Xu J, Ge W. Gas-solid reactor optimization based on EMMS-DPM simulation and machine learning. Particuology, 2024, 89: 131–143

    Article  CAS  Google Scholar 

  9. Yao L, Ge Z Q. Big data quality prediction in the process industry: a distributed parallel modeling framework. Journal of Process Control, 2018, 68: 1–13

    Article  ADS  CAS  Google Scholar 

  10. Sun Q Q, Ge Z Q. A Survey on deep learning for data-driven soft sensors. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5853–5866

    Article  Google Scholar 

  11. Yuan X F, Jia Z Z, Li L, Wang K, Ye L J, Wang Y L, Yang C H, Gui W H. A SIA-LSTM based virtual metrology for quality variables in irregular sampled time sequence of industrial processes. Chemical Engineering Science, 2022, 249: 117299

    Article  CAS  Google Scholar 

  12. Lee Y S, Chen J H. Developing semi-supervised latent dynamic variational autoencoders to enhance prediction performance of product quality. Chemical Engineering Science, 2023, 265: 118192

    Article  CAS  Google Scholar 

  13. Yang F, Sang Y S, Lv J C, Cao J. Prediction of gasoline yield in fluid catalytic cracking based on multiple level LSTM. Chemical Engineering Research & Design, 2022, 185: 119–129

    Article  CAS  Google Scholar 

  14. Li J C, Yang B, Li H G, Wang Y J, Qi C, Liu Y. DTDR-ALSTM: extracting dynamic time-delays to reconstruct multivariate data for improving attention-based LSTM industrial time series rediction models. Knowledge-Based Systems, 2021, 211: 106508

    Article  Google Scholar 

  15. Hao X, Huang G, Li Z, Zheng L, Zhao Y. A spatio-temporal data decoupling convolution network model for specific surface area prediction in cement grind process. ISA Transactions, 2023, 135: 380–397

    Article  PubMed  Google Scholar 

  16. Zhao C H. Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence. Journal of Process Control, 2022, 116: 255–272

    Article  CAS  Google Scholar 

  17. Jiang Y C, Yin S, Dong J W, Kaynak O. A review on soft sensors for monitoring, control, and optimization of industrial processes. IEEE Sensors Journal, 2021, 21(11): 12868–12881

    Article  ADS  Google Scholar 

  18. De Gooijer J G, Hyndman R J. 25 years of time series forecasting. International Journal of Forecasting, 2006, 22(3): 443–473

    Article  Google Scholar 

  19. Kuo Y H, Kusiak A. From data to big data in production research: the past and future trends. International Journal of Production Research, 2019, 57(15–16): 4828–4853

    Article  Google Scholar 

  20. Kumar S, Hussain L, Banarjee S, Reza M. Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster. In: 2018 Fifth International Conference on Emerging Applications of Information Technology. New York: IEEE, 2018, 1–4

    Google Scholar 

  21. Wang Y J, Ren Y M, Li H G. Symbolic multivariable hierarchical clustering based convolutional neural networks with applications in industrial process operating trend predictions. Industrial & Engineering Chemistry Research, 2020, 59(34): 15133–15145

    Article  CAS  Google Scholar 

  22. Yan F, Yang C J, Zhang X M. DSTED: a denoising spatial-temporal encoder-decoder framework for multistep prediction of burn-through point in sintering process. IEEE Transactions on Industrial Electronics, 2022, 69(10): 10735–10744

    Article  Google Scholar 

  23. Connor J T, Martin R D, Atlas L E. Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 1994, 5(2): 240–254

    Article  PubMed  CAS  Google Scholar 

  24. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780

    Article  PubMed  CAS  Google Scholar 

  25. Cho K, Van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078, 2014

  26. O’Shea K, Nash R. An introduction to convolutional neural networks. arXiv:1511.08458, 2015

  27. Wang Y J, Zhang Y C, Wu Z, Li H G, Christofides P D. Operational trend prediction and classification for chemical processes: a novel convolutional neural network method based on symbolic hierarchical clustering. Chemical Engineering Science, 2020, 225: 115796

    Article  CAS  Google Scholar 

  28. Zhou J, Cui G Q, Hu S D, Zhang Z Y, Yang C, Liu Z Y, Wang L F, Li C C, Sun M S. Graph neural networks: a review of methods and applications. AI Open, 2020, 1: 57–81

    Article  Google Scholar 

  29. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. arXiv:1409.0473, 2014

  30. Yin X, Han Y, Sun H, Xu Z, Yu H, Duan X. A multivariate time series prediction schema based on multi-attention in recurrent neural network. In: 2020 IEEE Symposium on Computers and Communications (ISCC). New York: IEEE, 2020, 1–7

    Google Scholar 

  31. Yang Y, Xiong Q, Wu C, Zou Q, Yu Y, Yi H, Gao M. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism. Environmental Science and Pollution Research International, 2021, 28(39): 55129–55139

    Article  PubMed  CAS  Google Scholar 

  32. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I. Attention is all you need. In: Advances in Neural Information Processing Systems. New York: Curran Associates Inc., 2017

    Google Scholar 

  33. Fu X B, Gao F, Wu J, Wei X Y, Duan F W. Spatiotemporal attention networks for wind power forecasting. In: 2019 International Conference on Data Mining Workshops. New York: IEEE, 2019, 149–154

    Google Scholar 

  34. Huang S T, Wang D L, Wu X, Tang A. Dsanet: dual self-attention network for multivariate time series forecasting. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: Association for Computing Machinery, 2019, 2129–2132

    Google Scholar 

  35. Wu N, Green B, Ben X, O’Banion S. Deep transformer models for time series forecasting: the influenza prevalence case. arXiv:2001.08317, 2020

  36. Scarselli F, Gori M, Tsoi A C, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80

    Article  PubMed  Google Scholar 

  37. Yu B, Yin H T, Zhu Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv:1709.04875, 2017

  38. Wu Z H, Pan S R, Long G D, Jiang J, Zhang C Q. Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121, 2019

  39. Lu B, Gan X Y, Jin H M, Fu L Y, Zhang H S. Spatiotemporal adaptive gated graph convolution network for urban traffic flow forecasting. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2020, 1025–1034

    Google Scholar 

  40. Amornbunchornvej C, Zheleva E, Berger-Wolf T. Variable-lag granger causality and transfer entropy for time series analysis. ACM Transactions on Knowledge Discovery from Data, 2021, 15(4): 1–30

    Article  Google Scholar 

  41. Xu H Y, Huang Y D, Duan Z H, Feng J, Song P Y. Multivariate time series forecasting based on causal inference with transfer entropy and graph neural network. arXiv:2005.01185, 2020

  42. He K W, Chen X, Wu Q, Yu S, Zhou Z. Graph attention spatial-temporal network with collaborative global-local learning for citywide mobile traffic prediction. IEEE Transactions on Mobile Computing, 2022, 21(4): 1244–1256

    Article  Google Scholar 

  43. Wu Z H, Pan S R, Long G D, Jiang J, Chang X J, Zhang C Q. Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: Association for Computing Machinery, 2020, 753–763

    Google Scholar 

  44. Kim T, Kim J, Tae Y, Park C, Choi J H, Choo J. Reversible instance normalization for accurate time-series forecasting against distribution shift. In: International Conference on Learning Representations, 2022

  45. Jin G Y, Xi Z X, Sha H Y, Feng Y H, Huang J C. Deep multiview spatiotemporal virtual graph neural network for significant citywide ride-hailing demand prediction. arXiv:2007.15189, 2020

  46. Li D F, Lin K X, Li X T, Liao J B, Du R, Chen D Q, Madden A. Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism. Information Processing & Management, 2022, 59(4): 102987

    Article  Google Scholar 

  47. Chai D, Wang L, Yang Q. Bike flow prediction with multi-graph convolutional networks. In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: Association for Computing Machinery, 2018, 397–400

    Google Scholar 

  48. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman R B. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6): 520–525

    Article  PubMed  CAS  Google Scholar 

  49. Lai G K, Chang W C, Yang Y M, Liu H X. Modeling long-and short-term temporal patterns with deep neural networks. In: The 41st international ACM SIGIR Conference on Research & Development in Information Retrieval. New York: Association for Computing Machinery, 2018, 95–104

    Google Scholar 

  50. Fan J, Zhang K, Huang Y, Zhu Y, Chen B. Parallel spatiotemporal attention-based TCN for multivariate time series prediction. Neural Computing & Applications, 2023, 35(18): 13109–13118

    Article  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (Grant No. 21991093), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA29050200), the Dalian Institute of Chemical Physics (DICP I202135), and the Energy Science and Technology Revolution Project (Grant No. E2010412).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhang or Mao Ye.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Li, X., Liu, D. et al. A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process. Front. Chem. Sci. Eng. 18, 42 (2024). https://doi.org/10.1007/s11705-024-2403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2403-7

Keywords

Navigation