Skip to main content
Log in

Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The enzymatic redox reactions in natural photosynthesis rely much on the participation of cofactors, with reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) or their oxidized form (NAD+/NADP+) as an important redox power. The photocatalytic regeneration of expensive and unstable NADH/NADPH in vitro is an important process in enzymatic reduction and has attracted much research attention. Though different types of photocatalysts have been developed for photocatalytic NADH/NADPH regeneration, the efficiency is still relatively low. To elucidate the key factors affecting the performance of photocatalytic NADH/NADPH regeneration is helpful to rationally design the photocatalyst and improve the photocatalytic efficiency. In this paper, we overview the recent progress in photocatalytic NADH/NADPH regeneration with the focus on the strategies to improve the visible light adsorption, the charge separation and migration efficiency, as well as the surface reaction, which jointly determine the overall photocatalytic regeneration efficiency. The potential development of photocatalytic NADH/NADPH regeneration and photocatalytic-enzymatic-coupling system is prospected finally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu H, Tian C, Song X, Liu C, Yang D, Jiang Z. Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15(7): 1773–1789

    Article  CAS  Google Scholar 

  2. Wang X, Yiu H H P. Heterogeneous catalysis mediated cofactor NADH regeneration for enzymatic reduction. ACS Catalysis, 2016, 6(3): 1880–1886

    Article  ADS  CAS  Google Scholar 

  3. Wang X, Saba T, Yiu H H P, Howe R F, Anderson J A, Shi J. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem, 2017, 2(5): 621–654

    Article  CAS  Google Scholar 

  4. Zhang Y, Zhao Y, Li R, Liu J. Bioinspired NADH regeneration based on conjugated photocatalytic systems. Solar RRL, 2021, 5(2): 2000339

    Article  CAS  Google Scholar 

  5. Bai Y, Wang L, Ge J. Advances in photo-enzymatic-coupling catalysis system. Systems Microbiology and Biomanufacturing, 2021, 1(3): 245–256

    Article  CAS  Google Scholar 

  6. Jones J B, Sneddon D W, Higgins W, Lewis A J. Preparative-scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. Journal of the Chemical Society Chemical Communications, 1972(15): 856–857

  7. Taylor K E, Jones J B. Nicotinamide coenzyme regeneration by dihydropyridine and pyridinium compounds. Journal of the American Chemical Society, 1976, 98(18): 5689–5694

    Article  PubMed  CAS  Google Scholar 

  8. Hollmann F, Arends I W C E, Holtmann D. Enzymatic reductions for the chemist. Green Chemistry, 2011, 13(9): 2285–2314

    Article  CAS  Google Scholar 

  9. Roche J, Groenen-Serrano K, Reynes O, Chauvet F, Tzedakis T. NADH regenerated using immobilized FDH in a continuously supplied reactor—application to L-lactate synthesis. Chemical Engineering Journal, 2014, 239: 216–225

    Article  CAS  Google Scholar 

  10. Tensi L, Macchioni A. Extremely fast NADH-regeneration using phosphonic acid as hydride source and iridium-pyridine-2-sulfonamidate catalysts. ACS Catalysis, 2020, 10(14): 7945–7949

    Article  CAS  Google Scholar 

  11. Ganesan V, Kim J J, Shin J, Park K, Yoon S. Efficient nicotinamide adenine dinucleotide regeneration with a rhodium-carbene catalyst and isolation of a hydride intermediate. Inorganic Chemistry, 2022, 61(15): 5683–5690

    Article  PubMed  CAS  Google Scholar 

  12. Burnett J W H, Li J, McCue A J, Kechagiopoulos P N, Howe R F, Wang X. Directing the H2-driven selective regeneration of NADH via Sn-doped Pt/SiO2. Green Chemistry, 2022, 24(4): 1451–1455

    Article  CAS  Google Scholar 

  13. Wang M, Ren X, Guo M, Liu J, Li H, Yang Q. Chemoselective NADH regeneration: the synergy effect of TiOx and Pt in NAD+ hydrogenation. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6499–6506

    Article  CAS  Google Scholar 

  14. Li S, Cheng Y, Chen Y, Li J, Sun Y, Shi J, Jiang Z. Topologically and chemically engineered conjugated polymer with synergistically intensified electron generation, transfer and utilization for photocatalytic nicotinamide cofactor regeneration. Applied Catalysis B: Environmental, 2022, 317: 121772

    Article  CAS  Google Scholar 

  15. Oppelt K T, Woss E, Stiftinger M, Schofberger W, Buchberger W, Knor G. Photocatalytic reduction of artificial and natural nucleotide co-factors with a chlorophyll-like tin-dihydroporphyrin sensitizer. Inorganic Chemistry, 2013, 52(20): 11910–11922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ji X, Kang Y, Fan T, Xiong Q, Zhang S, Tao W, Zhang H. An antimonene/Cp*Rh(phen)Cl/black phosphorus hybrid nanosheet-based Z-scheme artificial photosynthesis for enhanced photo/bio-catalytic CO2 reduction. Journal of Materials Chemistry A, 2020, 8(1): 323–333

    Article  CAS  Google Scholar 

  17. Zhang Y, Yu W, Cao S, Sun Z, Nie X, Liu Y, Zhao Z. Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3-CdS microspheres. ACS Catalysis, 2021, 11(21): 13408–13415

    Article  CAS  Google Scholar 

  18. Goren Z, Lapidot N, Willner I. Photocatalysed regeneration of NAD(P)H by CdS and TiO2 semiconductors: applications in enzymatic synthesis. Journal of Molecular Catalysis, 1988, 47(1): 21–32

    Article  CAS  Google Scholar 

  19. Immanuel S, Sivasubramanian R. Electrochemical reduction of NAD+ on graphene oxide and chemically reduced graphene oxide nanosheets. Materials Science and Engineering B, 2020, 262: 114705

    Article  CAS  Google Scholar 

  20. Liu F, Ding C, Tian S, Lu S M, Feng C, Tu D, Liu Y, Wang W, Li C. Electrocatalytic NAD+ reduction via hydrogen atomcoupled electron transfer. Chemical Science, 2022, 13(45): 13361–13367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lee Y S, Gerulskis R, Minteer S D. Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches. Current Opinion in Biotechnology, 2022, 73: 14–21

    Article  PubMed  CAS  Google Scholar 

  22. Singh C, Kumar A, Yadav R K, Gole V L, Dwivedi D K. Solar light-driven photocatalyst-enzyme attached artificial photosynthetic system for regeneration and production of 1,4-NADH and L-glutamate. Vietnam Journal of Chemistry, 2021, 59(2): 198–202

    CAS  Google Scholar 

  23. Zhang S, Liu S, Sun Y, Li S, Shi J, Jiang Z. Enzyme-photocoupled catalytic systems. Chemical Society Reviews, 2021, 50(24): 13449–13466

    Article  PubMed  CAS  Google Scholar 

  24. Bhoware S S, Kim K Y, Kim J A, Wu Q, Kim J. Photocatalytic activity of Pt nanoparticles for visible light-driven production of NADH. Journal of Physical Chemistry C, 2011, 115(5): 2553–2557

    Article  CAS  Google Scholar 

  25. Huang J, Antonietti M, Liu J. Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2(21): 7686–7693

    Article  CAS  Google Scholar 

  26. Huang X, Liu J, Yang Q, Liu Y, Zhu Y, Li T, Tsang Y H, Zhang X. Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6(104): 101974–101980

    Article  ADS  CAS  Google Scholar 

  27. Liu J, Huang J, Zhou H, Antonietti M. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440

    Article  CAS  Google Scholar 

  28. Nam D H, Lee S H, Park C B. CdTe, CdSe, and CdS nanocrystals for highly efficient regeneration of nicotinamide cofactor under visible light. Small, 2010, 6(8): 922–926

    Article  PubMed  CAS  Google Scholar 

  29. Ji X, Wang J, Mei L, Tao W, Barrett A, Su Z, Wang S, Ma G, Shi J, Zhang S. Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Advanced Functional Materials, 2018, 28(9): 1705083

    Article  Google Scholar 

  30. Pan Q, Liu H, Zhao Y, Chen S, Xue B, Kan X, Huang X, Liu J, Li Z. Preparation of N-graphdiyne nanosheets at liquid/liquid interface for photocatalytic NADH regeneration. ACS Applied Materials & Interfaces, 2019, 11(3): 2740–2744

    Article  CAS  Google Scholar 

  31. Shi Q, Yang D, Jiang Z, Li J. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1–4): 44–48

    Article  CAS  Google Scholar 

  32. Liu J, Antonietti M. Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy & Environmental Science, 2013, 6(5): 1486–1493

    Article  CAS  Google Scholar 

  33. Bavykina A, Kolobov N, Khan I S, Bau J A, Ramirez A, Gascon J. Metal-organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chemical Reviews, 2020, 120(16): 8468–8535

    Article  PubMed  CAS  Google Scholar 

  34. Gan X, Lei D, Wong K Y. Two-dimensional layered nanomaterials for visible-light-driven photocatalytic water splitting. Materials Today Energy, 2018, 10: 352–367

    Article  Google Scholar 

  35. Yang Y, Chen H, Lu J. Inactivation of algae by visible-light-driven modified photocatalysts: a review. Science of the Total Environment, 2023, 858: 159640

    Article  PubMed  ADS  CAS  Google Scholar 

  36. Kawawaki T, Kawachi M, Yazaki D, Akinaga Y, Hirayama D, Negishi Y. Development and functionalization of visible-light-driven water-splitting photocatalysts. Nanomaterials, 2022, 12(3): 344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mandler D, Willner I. Photosensitized NAD(P)H regeneration systems; application in the reduction of butan-2-one, pyruvic, and acetoacetic acids and in the reductive amination of pyruvic and oxoglutaric acid to amino acid. Journal of the Chemical Society Perkin Transactions 2, 1986(6): 805–811

  38. Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

    Article  PubMed  CAS  Google Scholar 

  39. Kosco J, Moruzzi F, Willner B, McCulloch I. Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Advanced Energy Materials, 2020, 10(39): 2001935

    Article  CAS  Google Scholar 

  40. Carmo M E G, Spies L, Silva G N, Lopes O F, Bein T, Schneider J, Patrocinio A O T. From conventional inorganic semiconductors to covalent organic frameworks: advances and opportunities in heterogeneous photocatalytic CO2 reduction. Journal of Materials Chemistry A, 2023, 11(26): 13815–13843

    Article  CAS  Google Scholar 

  41. Guo Y, Zhou Q, Zhu B, Tang C Y, Zhu Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catalysis, 2023, 1(4): 333–352

    Article  CAS  Google Scholar 

  42. Lee S Y, Park S J. TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761–1769

    Article  CAS  Google Scholar 

  43. Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169–189

    Article  CAS  Google Scholar 

  44. Fujishima A, Zhang X, Tryk D. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582

    Article  ADS  CAS  Google Scholar 

  45. Asahi R, Morikawa T, Irie H, Ohwaki T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852

    Article  PubMed  CAS  Google Scholar 

  46. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

    Article  PubMed  CAS  Google Scholar 

  47. Mancuso A, Blangetti N, Sacco O, Freyria F S, Bonelli B, Esposito S, Sannino D, Vaiano V. Photocatalytic degradation of crystal violet dye under visible light by Fe-doped TiO2 prepared by reverse-micelle sol-gel method. Nanomaterials, 2023, 13(2): 270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen D, Yang D, Wang Q, Jiang Z. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 2006, 45(12): 4110–4116

    Article  CAS  Google Scholar 

  49. Liu F, Cao H, Xu L, Fu H, Sun S, Xiao Z, Sun C, Long X, Xia Y, Wang S. Design and preparation of highly active TiO2 photocatalysts by modulating their band structure. Journal of Colloid and Interface Science, 2022, 629(Part B): 336–344

    Article  PubMed  Google Scholar 

  50. Naseri A, Samadi M, Pourjavadi A, Moshfegh A Z, Ramakrishna S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. Journal of Materials Chemistry A, 2017, 5(45): 23406–23433

    Article  CAS  Google Scholar 

  51. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R, Carlsson J M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18(41): 4893–4908

    Article  CAS  Google Scholar 

  52. Liu J, Cazelles R, Chen Z P, Zhou H, Galarneau A, Antonietti M. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14699–14705

    Article  PubMed  CAS  Google Scholar 

  53. Tripathi A, Yadav R K, Singh S, Shahin R, Dwivedi D K, Gupta N K, Kim T W, Verma R K, Kumar K. A donor-acceptor self-assembled graphitic carbon nitride based EB-T photocatalytic system for generation and regeneration of C(sp3)-F bond and NADH under sunlight. Diamond and Related Materials, 2023, 136: 109998

    Article  ADS  CAS  Google Scholar 

  54. Singh C, Chaubey S, Singh P, Sharma K, Shambhavi, Kumar A, Yadav R K, Dwivedi D K, Baeg J O, Kumar U, et al. Self-assembled carbon nitride/cobalt(III) porphyrin photocatalyst for mimicking natural photosynthesis. Diamond and Related Materials, 2020, 101: 107648

    Article  ADS  CAS  Google Scholar 

  55. Xie F, Jia H, Wun C K T, Huang X, Chai Y, Tsoi C C, Pan Z, Zhu S, Ren K, Lo T W B, et al. Dual-defect abundant graphitic carbon nitride for efficient photocatalytic nicotinamide cofactor regeneration. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 11002–11011

    Article  CAS  Google Scholar 

  56. Swarnkar N, Yadav R K, Singh S, Shahin R, Shukla R K, Tripathi S K, Dwivedi D K, Nath S, Singh C, Baeg J O. Highly selective in-sttu prepared g-C3N4/P-B composite photocatalyst for direct C-H bond arylation and NADH regeneration cofactor under solar light. Journal of Chemical Sciences, 2023, 135(2): 29

    Article  CAS  Google Scholar 

  57. Paul D R, Sharma R, Singh S, Singh P, Panchal P, Sharma A, Devi P, Nehra S P. Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. International Journal of Hydrogen Energy, 2023, 48(96): 37746–37761

    Article  CAS  Google Scholar 

  58. Wen J, Xie J, Chen X, Li X. A review on g-C3N4-based photocatalysts. Applied Surface Science, 2017, 391: 72–123

    Article  ADS  CAS  Google Scholar 

  59. Gupta S K, Gupta A K, Yadav R K, Singh A, Yadav B C. Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochemistry and Photobiology, 2022, 98(1): 160–168

    Article  PubMed  CAS  Google Scholar 

  60. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015, 176–177: 44–52

    Article  Google Scholar 

  61. Vu M H, Sakar M, Nguyen C C, Do T O. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4194–4203

    Article  CAS  Google Scholar 

  62. Sun C, Zhang H, Liu H, Zheng X, Zou W, Dong L, Qi L. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Applied Catalysis B: Environmental, 2018, 235: 66–74

    Article  CAS  Google Scholar 

  63. Singh P, Yadav R K, Kumar K, Lee Y, Gupta A K, Kumar K, Yadav B C, Singh S N, Dwivedi D K, Nam S H, et al. Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide. Catalysis Science & Technology, 2021, 11(19): 6401–6410

    Article  CAS  Google Scholar 

  64. Zhang P, Hu J, Shen Y, Yang X, Qu J, Du F, Sun W, Li C M. Photoenzymatic catalytic cascade system of a pyromellitic diimide/g-C3N4 heterojunction to efficiently regenerate NADH for highly selective CO2 reduction toward formic acid. ACS Applied Materials & Interfaces, 2021, 13(39): 46650–46658

    Article  CAS  Google Scholar 

  65. Mishra S, Yadav R K, Singh S, Chaubey S, Singh P, Singh C, Gupta S K, Gupta S, Tiwary D, Kim T W. Solar light responsive graphitic carbon nitride coupled porphyrin photocatalyst that uses for solar fine chemical production. Photochemistry and Photobiology, 2023, 99(4): 1080–1091

    Article  PubMed  CAS  Google Scholar 

  66. Cheng L, Xiang Q, Liao Y, Zhang H. CdS-based photocatalysts. Energy & Environmental Science, 2018, 11(6): 1362–1391

    Article  CAS  Google Scholar 

  67. Prasad C, Madkhali N, Won J S, Lee J E, Sangaraju S, Choi H Y. CdS based heterojunction for water splitting: a review. Materials Science and Engineering B, 2023, 292: 116413

    Article  CAS  Google Scholar 

  68. Li Q, Li X, Wageh S, Al-Ghamdi A A, Yu J G. CdS/graphene nanocomposite photocatalysts. Advanced Energy Materials, 2015, 5(14): 1500010

    Article  Google Scholar 

  69. Chen W, Huang G B, Song H, Zhang J. Efficient and stable charge transfer channels for photocatalytic water splitting activity of CdS without sacrificial agents. Journal of Materials Chemistry A, 2020, 8(40): 20963–20969

    Article  CAS  Google Scholar 

  70. Fermín D J, Ponomarev E A, Peter L M. A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 1999, 473(1–2): 192–203

    Article  Google Scholar 

  71. Xiang X, Zhu B, Cheng B, Yu J, Lv H. Enhanced photocatalytic H2-production activity of CdS quantum dots using Sn2+ as cocatalyst under visible light irradiation. Small, 2020, 16(26): 2001024

    Article  CAS  Google Scholar 

  72. Roy A M, De G C, Sasmal N, Bhattacharyya S S. Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. International Journal of Hydrogen Energy, 1995, 20(8): 627–630

    Article  CAS  Google Scholar 

  73. Wu C, Huang W, Liu H, Lv K, Li Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 2023, 330: 122653

    Article  CAS  Google Scholar 

  74. Chen Y, Zhong W, Chen F, Wang P, Fan J, Yu H. Photoinduced self-stability mechanism of CdS photocatalyst: the dependence of photocorrosion and H2-evolution performance. Journal of Materials Science and Technology, 2022, 121: 19–27

    Article  CAS  Google Scholar 

  75. Tang Y, Hu X, Liu C. Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16(46): 25321–25329

    Article  PubMed  CAS  Google Scholar 

  76. Zhang H, Zhu Y. Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization. Journal of Physical Chemistry C, 2010, 114(13): 5822–5826

    Article  CAS  Google Scholar 

  77. Wang D, Bao C, Luo Q, Yin R, Li X, An J, Xu Z. Improved visible-light photocatalytic activity and anti-photocorrosion of CdS nanoparticles surface-modified by conjugated derivatives from polyvinyl chloride. Journal of Environmental Chemical Engineering, 2015, 3(3): 1578–1585

    Article  CAS  Google Scholar 

  78. Ning X, Zhen W, Wu Y, Lu G. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2018, 226: 373–383

    Article  CAS  Google Scholar 

  79. Lu Z, Yan H, Li B, Song M, Hang Y, Zhou G, Xu Y, Ma C, Han S, Liu X. Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605: 154694

    Article  CAS  Google Scholar 

  80. Gao C, Zhang S, Feng F, Hu S, Zhao Q, Chen Y. Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science, 2023, 652: 1043–1052

    Article  PubMed  CAS  Google Scholar 

  81. Yang D, Zhang Y, Zou H, Zhang S, Wu Y, Cai Z, Shi J, Jiang Z. Phosphorus quantum dots-facilitated enrichment of electrons on g-C3N4 hollow tubes for visible-light-driven nicotinamide adenine dinucleotide regeneration. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 285–295

    Article  Google Scholar 

  82. Wu Y, Ward Bond J, Li D, Zhang S, Shi J, Jiang Z. g-C3N4@α-Fe2O3/C photocatalysts: synergistically intensified charge generation and charge transfer for NADH regeneration. ACS Catalysis, 2018, 8(7): 5664–5674

    Article  CAS  Google Scholar 

  83. Chen L, Yang Y, Jiang D. CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. Journal of the American Chemical Society, 2010, 132(26): 9138–9143

    Article  PubMed  CAS  Google Scholar 

  84. Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dinca M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, et al. The current status of MOF and COF applications. Angewandte Chemie International Edition, 2021, 60(45): 23975–24001

    Article  PubMed  CAS  Google Scholar 

  85. Wang C, Li J, Lv X, Zhang Y, Guo G. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867

    Article  ADS  CAS  Google Scholar 

  86. Xie Y, Wang T, Liu X, Zou K, Deng W. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nature Communications, 2013, 4(1): 1960

    Article  PubMed  ADS  Google Scholar 

  87. Lee J S M, Cooper A I. Advances in conjugated microporous polymers. Chemical Reviews, 2020, 120(4): 2171–2214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jiang J X, Su F, Trewin A, Wood C D, Campbell N L, Niu H, Dickinson C, Ganin A Y, Rosseinsky M J, Khimyak Y Z, et al. Conjugated microporous poly(aryleneethynylene) networks. Angewandte Chemie International Edition, 2007, 46(45): 8574–8578

    Article  PubMed  CAS  Google Scholar 

  89. Lan F, Wang Q, Chen H, Chen Y, Zhang Y, Huang B, Liu H, Liu J, Li R. Preparation of hydrophilic conjugated microporous polymers for efficient visible light-driven nicotinamide adenine dinucleotide regeneration and photobiocatalytic formaldehyde reduction. ACS Catalysis, 2020, 10(21): 12976–12986

    Article  CAS  Google Scholar 

  90. Wang Y, Liu H, Pan Q, Ding N, Yang C, Zhang Z, Jia C, Li Z, Liu J, Zhao Y. Construction of thiazolo[5,4-d]]thiazole-based two-dimensional network for efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2020, 12(41): 46483–46489

    Article  CAS  Google Scholar 

  91. Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

    Article  PubMed  ADS  Google Scholar 

  92. Liang Q, Li Z, Huang Z, Kang F, Yang Q. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Advanced Functional Materials, 2015, 25(44): 6885–6892

    Article  CAS  Google Scholar 

  93. Yadav D, Kumar A, Kim J Y, Park N J, Baeg J O. Interfacially synthesized 2D COF thin film photocatalyst: efficient photocatalyst for solar formic acid production from CO2 and fine chemical synthesis. Journal of Materials Chemistry A, 2021, 9(15): 9573–9580

    Article  CAS  Google Scholar 

  94. Singh N, Yadav D, Mulay S V, Kim J Y, Park N J, Baeg J O. Band gap engineering in solvochromic 2D covalent organic framework photocatalysts for visible light-driven enhanced solar fuel production from carbon dioxide. ACS Applied Materials & Interfaces, 2021, 13(12): 14122–14131

    Article  CAS  Google Scholar 

  95. Wang Y, Liu H, Pan Q, Wu C, Hao W, Xu J, Chen R, Liu J, Li Z, Zhao Y. Construction of fully conjugated covalent organic frameworks via facile linkage conversion for efficient photoenzymatic catalysis. Journal of the American Chemical Society, 2020, 142(13): 5958–5963

    Article  PubMed  CAS  Google Scholar 

  96. Aguirre M E, Isla Naveira R, Botta P M, Altieri T A, Wolosiuk A, Churio M S. Early instability of MIL-125-NH2 in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45(23): 10277–10286

    Article  CAS  Google Scholar 

  97. Mohamed R M, Ibrahim F M. Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. Journal of Industrial and Engineering Chemistry, 2015, 22: 28–33

    Article  CAS  Google Scholar 

  98. Li H, Liu J, Wang M, Ren X, Li C, Ren Y, Yang Q. Fabrication of nanoCOF/polyoxometallate composites for photocatalytic NADH regeneration via cascade electron relay. Solar RRL, 2021, 5(1): 2000641

    Article  CAS  Google Scholar 

  99. Chen S, Zhang H, Fu X, Hu Y. Preparation, characterization, and photocatalytic performance of Ce2S3 for nitrobenzene reduction. Applied Surface Science, 2013, 275: 335–341

    Article  ADS  CAS  Google Scholar 

  100. Tsutsumi K, Uchikawa F, Sakai K, Tabata K. Photoinduced reduction of nitroarenes using a transition-metal-loaded silicon semiconductor under visible light irradiation. ACS Catalysis, 2016, 6(7): 4394–4398

    Article  CAS  Google Scholar 

  101. Yang B, Luo W, Liao Q, Zhu J, Gan M, Liu X, Qiu G. Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200–211

    Article  CAS  Google Scholar 

  102. Wang S, Wu X, Fang J, Zhang F, Liu Y, Liu H, He Y, Luo M, Li R. Direct Z-scheme polymer/polymer double-shell hollow nanostructures for efficient NADH regeneration and biocatalytic artificial photosynthesis under visible light. ACS Catalysis, 2023, 13(7): 4433–4443

    Article  CAS  Google Scholar 

  103. Tian Y, Zhou Y, Zong Y, Li J, Yang N, Zhang M, Guo Z, Song H. Construction of functionally compartmental inorganic photocatalyst-enzyme system via imitating chloroplast for efficient photoreduction of CO2 to formic acid. ACS Applied Materials & Interfaces, 2020, 12(31): 34795–34805

    Article  CAS  Google Scholar 

  104. Marschall R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440

    Article  CAS  Google Scholar 

  105. Sun Z, Wang H, Wu Z, Wang L. g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300: 160–172

    Article  CAS  Google Scholar 

  106. Zheng Y, Chen Y, Gao B, Lin B, Wang X. Phosphorene-based heterostructured photocatalysts. Engineering, 2021, 7(7): 991–1001

    Article  CAS  Google Scholar 

  107. Niu X, Bai X, Zhou Z, Wang J. Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catalysis, 2020, 10(3): 1976–1983

    Article  CAS  Google Scholar 

  108. Tu J, Wu W, Lei X, Li P. The SWSe-BP vdW heterostructure as a promising photocatalyst for water splitting with power conversion efficiency of 19.4%. ACS Omega, 2022, 7(42): 37061–37069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Xiao M, Wang Z, Lyu M, Luo B, Wang S, Liu G, Cheng H M, Wang L. Hollow nanostructures for photocatalysis: advantages and challenges. Advanced Materials, 2019, 31(38): 1801369

    Article  Google Scholar 

  110. Wang H, Lin Q, Yin L, Yang Y, Qiu Y, Lu C, Yang H. Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small, 2019, 15(16): 1900011

    Article  Google Scholar 

  111. Zeng P, Ji X, Su Z, Zhang S. WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Advances, 2018, 8(37): 20557–20567

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  112. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A. Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694

    Article  Google Scholar 

  113. Ng B J, Putri L K, Kong X Y, Teh Y W, Pasbakhsh P, Chai S P. Z-scheme photocatalytic systems for solar water splitting. Advanced Materials, 2020, 7(7): 1903171

    CAS  Google Scholar 

  114. Xu Q, Zhang L, Yu J, Wageh S, Al Ghamdi A A, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Materials Today, 2018, 21(10): 1042–1063

    Article  CAS  Google Scholar 

  115. Singh R, Bhateria R. Core-shell nanostructures: a simplest two-component system with enhanced properties and multiple applications. Environmental Geochemistry and Health, 2021, 43(7): 2459–2482

    Article  PubMed  CAS  Google Scholar 

  116. Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Reviews, 2012, 112(4): 2373–2433

    Article  PubMed  CAS  Google Scholar 

  117. Das S, Pérez Ramírez J, Gong J, Dewangan N, Hidajat K, Gates B C, Kawi S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chemical Society Reviews, 2020, 49(10): 2937–3004

    Article  PubMed  CAS  Google Scholar 

  118. Yang D, Zhang Y, Zhang S, Cheng Y, Wu Y, Cai Z, Wang X, Shi J, Jiang Z. Coordination between electrontransfer and molecule diffusion through a bioinspired amorphous titania nanoshell for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2019, 9(12): 11492–11501

    Article  CAS  Google Scholar 

  119. Zhou L, Su Z, Wang J, Cai Y, Ding N, Wang L, Zhang J, Liu Y, Lei J. Highly selective regeneration of 1,4-NADH enabled by a metal-free core-shell photocatalyst of resorcinol-formaldehyde resins@polyaniline under visible light. Applied Catalysis B: Environmental, 2024, 341: 123290

    Article  CAS  Google Scholar 

  120. Zhao H, Wang L, Liu G, Liu Y, Zhang S, Wang L, Zheng X, Zhou L, Gao J, Shi J, et al. Hollow Rh-COF@COF S-scheme heterojunction for photocatalytic nicotinamide cofactor regeneration. ACS Catalysis, 2023, 13(10): 6619–6629

    Article  CAS  Google Scholar 

  121. Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

    Article  PubMed  CAS  Google Scholar 

  122. Qi Y, Zhang J, Kong Y, Zhao Y, Chen S, Li D, Liu W, Chen Y, Xie T, Cui J, et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13(1): 484

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  123. Xiao N, Li S, Li X, Ge L, Gao Y, Li N. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. Chinese Journal of Catalysis, 2020, 41(4): 642–671

    Article  CAS  Google Scholar 

  124. Zhou Y, He Y, Gao M, Ding N, Lei J, Zhou Y. Efficient photocatalytic NADH regeneration with Rh-loaded Z-scheme mediator-free system. Chinese Chemical Letters, 2024(2), 35: 108690

    Article  CAS  Google Scholar 

  125. Jain P K, Huang X, El Sayed I H, El Sayed M A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3): 107–118

    Article  CAS  Google Scholar 

  126. Fang M, Tan X, Liu Z, Hu B, Wang X. Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021, 2021: 9794329

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  127. Jiang J, Wang X, Guo H. Enhanced interfacial charge transfer/separation by LSPR-induced defective semiconductor toward high CO2RR performance. Small, 2023, 19(33): 2301280

    Article  CAS  Google Scholar 

  128. Zhou S, Cai Y, Zhang J, Liu Y, Zhou L, Lei J. Au-loaded resorcinol-formaldehyde resin photocatalysts: hollow sphere structure design and localized surface plasmon resonance effect synergistically promote efficient nicotinamide adenine dinucleotide (NADH) regeneration. ACS Sustainable Chemistry & Engineering, 2022, 10(44): 14464–14473

    Article  CAS  Google Scholar 

  129. Dhankhar A, Jain V, Chakraborty I N, Pillai P P. Enhancing the photocatalytic regeneration of nicotinamide cofactors with surface engineered plasmonic antenna-reactor system. Journal of Photochemistry and Photobiology A Chemistry, 2023, 437: 114472

    Article  CAS  Google Scholar 

  130. Wang S, Gao Y, Miao S, Liu T, Mu L, Li R, Fan F, Li C. Positioning the water oxidation reaction sites in plasmonic photocatalysts. Journal of the American Chemical Society, 2017, 139(34): 11771–11778

    Article  PubMed  CAS  Google Scholar 

  131. Zhao S, Zhang Y, Zhou Y, Fang J, Wang Y, Zhang C, Chen W. Fabrication of sandwich-structured g-C3N4/Au/BiOCl Z-scheme photocatalyst with enhanced photocatalytic performance under visible light irradiation. Journal of Materials Science, 2018, 53(8): 6008–6020

    Article  ADS  CAS  Google Scholar 

  132. Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. Journal of the American Chemical Society, 2018, 140(4): 1423–1427

    Article  PubMed  CAS  Google Scholar 

  133. Zhang L, Zhao Q, Shen L, Li Q, Liu T, Hou L, Yang J. Enhancing the photocatalytic activity of defective titania for carbon dioxide photoreduction via surface functionalization. Catalysis Science & Technology, 2022, 12(2): 509–518

    Article  Google Scholar 

  134. Feng C, Wu Z, Huang K, Ye J, Zhang H. Surface modification of 2D photocatalysts for solar energy conversion. Advanced Materials, 2022, 34(23): 2200180

    Article  CAS  Google Scholar 

  135. Ma B, Sun S, He H, Lv R, Deng J, Huo T, Zhao Y, Yu H, Zhou L. An efficient metal-free photocatalytic system with enhanced activity for NADH regeneration. Industrial & Engineering Chemistry Research, 2019, 58(51): 23567–23573

    Article  CAS  Google Scholar 

  136. Li C, Liu J, Li H, Wu K, Wang J, Yang Q. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 2022, 13(1): 2357

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  137. Dai C, Liu B. Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science, 2020, 13(1): 24–52

    Article  MathSciNet  CAS  Google Scholar 

  138. Lan Z, Ren W, Chen X, Zhang Y, Wang X. Conjugated donor-acceptor polymer photocatalysts with electron-output “tentacles” for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 245: 596–603

    Article  CAS  Google Scholar 

  139. Meng J, Tian Y, Li C, Lin X, Wang Z, Sun L, Zhou Y, Li J, Yang N, Zong Y, et al. A thiophene-modified doubleshell hollow g-C3N4 nanosphere boosts NADH regeneration via synergistic enhancement of charge excitation and separation. Catalysis Science & Technology, 2019, 9(8): 1911–1921

    Article  CAS  Google Scholar 

  140. Son E J, Lee Y W, Ko J W, Park C B. Amorphous carbon nitride as a robust photocatalyst for biocatalytic solar-to-chemical conversion. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2545–2552

    Article  CAS  Google Scholar 

  141. Linsebigler A, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 1995, 95(3): 735–758

    Article  CAS  Google Scholar 

  142. Ning X, Meng S, Fu X, Ye X, Chen S. Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18(12): 3628–3639

    Article  CAS  Google Scholar 

  143. Emmanuel M A, Bender S G, Bilodeau C, Carceller J M, DeHovitz J S, Fu H, Liu Y, Nicholls B T, Ouyang Y, Page C G, et al. Photobiocatalytic strategies for organic synthesis. Chemical Reviews, 2023, 123(9): 5459–5520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Concepcion J J, Jurss J W, Brennaman M K, Hoertz P G, Patrocinio A O T, Murakami Iha N Y, Templeton J L, Meyer T J. Making oxygen with ruthenium complexes. Accounts of Chemical Research, 2009, 42(12): 1954–1965

    Article  PubMed  CAS  Google Scholar 

  145. Sharma V K, Hutchison J M, Allgeier A M. Redox biocatalysis: quantitative comparisons of nicotinamide cofactor regeneration methods. ChemSusChem, 2022, 15(22): e202200888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Zhang Y, Liu J. Bioinspired photocatalytic NADH regeneration by covalently metalated carbon nitride for enhanced CO2 reduction. Chemistry A European Journal, 2022, 28(55): e202201430

    Article  PubMed  CAS  Google Scholar 

  147. Cheng Y, Shi J, Wu Y, Wang X, Sun Y, Cai Z, Chen Y, Jiang Z. Intensifying electron utilization by surface-anchored Rh complex for enhanced nicotinamide cofactor regeneration and photoenzymatic CO2 reduction. Research, 2021, 2021: 8175709

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  148. Xing X, Liu Y, Shi M, Li K, Fan X, Wu Z, Wang N, Yu X. Preparation of chiral aryl alcohols: a controllable enzymatic strategy via light-driven NAD(P)H regeneration. New Journal of Chemistry, 2022, 46(13): 6274–6282

    Article  CAS  Google Scholar 

  149. Lin G, Zhang Y, Hua Y, Zhang C, Jia C, Ju D, Yu C, Li P, Liu J. Bioinspired metalation of the metal-organic framework MIL-125-NH2 for photocatalytic NADH regeneration and gas-liquid-solid three-phase enzymatic CO2 reduction. Angewandte Chemie International Edition, 2022, 61(31): e202206283

    Article  PubMed  ADS  CAS  Google Scholar 

  150. Wu Y, Shi J, Li D, Zhang S, Gu B, Qiu Q, Sun Y, Zhang Y, Cai Z, Jiang Z. Synergy of electron transfer and electron utilization via metal-organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catalysis, 2020, 10(5): 2894–2905

    Article  CAS  Google Scholar 

  151. Wu X, Wang S, Fang J, Chen H, Liu H, Li R. Enhanced photocatalytic efficiency in visible-light-induced NADH regeneration by intramolecular electron transfer. ACS Applied Materials & Interfaces, 2022, 14(34): 38895–38904

    Article  CAS  Google Scholar 

  152. Zhao Z, Zheng D, Guo M, Yu J, Zhang S, Zhang Z, Chen Y. Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angewandte Chemie International Edition, 2022, 61(12): e202200261

    Article  PubMed  CAS  Google Scholar 

  153. Liu J, Ren X, Li C, Wang M, Li H, Yang Q. Assembly of COFs layer and electron mediator on silica for visible light driven photocatalytic NADH regeneration. Applied Catalysis B: Environmental, 2022, 310: 121314

    Article  CAS  Google Scholar 

  154. Zhao Y, Liu H, Wu C, Zhang Z, Pan Q, Hu F, Wang R, Li P, Huang X, Li Z. Fully conjugated two-dimensional sp2-carbon covalent organic frameworks as artificial photosystem I with high efficiency. Angewandte Chemie International Edition, 2019, 58(16): 5376–5381

    Article  PubMed  CAS  Google Scholar 

  155. Roy S, Jain V, Kashyap R K, Rao A, Pillai P P. Electrostatically driven multielectron transfer for the photocatalytic regeneration of nicotinamide cofactor. ACS Catalysis, 2020, 10(10): 5522–5528

    Article  CAS  Google Scholar 

  156. Zhang Z, Tong J, Meng X, Cai Y, Ma S, Huo F, Luo J, Xu B, Zhang S, Pinelo M. Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11503–11511

    Article  CAS  Google Scholar 

  157. Kim J H, Lee S H, Lee J S, Lee M, Park C B. Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. Chemical Communications, 2011, 47(37): 10227–10229

    Article  PubMed  CAS  Google Scholar 

  158. Wang Y, Sun J, Zhang H, Zhao Z, Liu W. Tetra(4-carboxyphenyl)porphyrin for efficient cofactor regeneration under visible light and its immobilization. Catalysis Science & Technology, 2018, 8(10): 2578–2587

    Article  CAS  Google Scholar 

  159. Kita Y, Amao Y. Visible-light-driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with a system of hybridized photocatalytic NADH regeneration and multi-biocatalysts. Green Chemistry, 2023, 25(7): 2699–2710

    Article  CAS  Google Scholar 

  160. Huang D, Ju Z P, Li C S, Yao C M, Guo J. First-principles study of Ag2ZnSnS4 as a photocatalyst. Acta Physica Sinica, 2014, 63(24): 247101

    Article  Google Scholar 

  161. Ye Y, Zang Z, Zhou T, Dong F, Lu S, Tang X, Wei W, Zhang Y. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. Journal of Catalysis, 2018, 357: 100–107

    Article  Google Scholar 

  162. Ge L, Ke Y, Li X. Machine learning integrated photocatalysis: progress and challenges. Chemical Communications, 2023, 59(39): 5795–5806

    Article  PubMed  CAS  Google Scholar 

  163. Mai H, Le T C, Chen D, Winkler D A, Caruso R A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chemical Reviews, 2022, 122(16): 13478–13515

    Article  PubMed  CAS  Google Scholar 

  164. Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 2006, 6(2): 215–218

    Article  PubMed  ADS  CAS  Google Scholar 

  165. Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010, 39(11): 4206–4219

    Article  PubMed  CAS  Google Scholar 

  166. Hargenrader G N, Weerasooriya R B, Ilic S, Niklas J, Poluektov O G, Glusac K D. Photoregeneration of biomimetic nicotinamide adenine dinucleotide analogues via a dyesensitized approach. ACS Applied Energy Materials, 2019, 2(1): 80–91

    Article  CAS  Google Scholar 

  167. Mishra A, Fischer M K, Bauerle P. Metal-free organic dyes for dye-sensitized solar cells: from structure property relationships to design rules. Angewandte Chemie International Edition, 2009, 48(14): 2474–2499

    Article  PubMed  CAS  Google Scholar 

  168. Mojiri-Foroushani M, Dehghani H, Salehi-Vanani N. Enhancement of dye-sensitized solar cells performances by improving electron density in conduction band of nanostructure TiO2 electrode with using a metalloporphyrin as additional dye. Electrochimica Acta, 2013, 92: 315–322

    Article  CAS  Google Scholar 

  169. Mendizabal F, Mera Adasme R, Xu W H, Sundholm D. Electronic and optical properties of metalloporphyrins of zinc on TiO2 cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7(68): 42677–42684

    CAS  Google Scholar 

  170. Ludin N A, Al Alwani Mahmoud A M, Bakar Mohamad A, Kadhum A A H, Sopian K, Abdul Karim N S. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews, 2014, 31: 386–396

    Article  CAS  Google Scholar 

  171. Wu K L, Li C H, Chi Y, Clifford J N, Cabau L, Palomares E, Cheng Y M, Pan H A, Chou P T. Dye molecular structure device open-circuit voltage correlation in Ru(II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells. Journal of the American Chemical Society, 2012, 134(17): 7488–7496

    Article  PubMed  CAS  Google Scholar 

  172. Le T T, Akhtar M S, Park D M, Lee J C, Yang O B. Water splitting on Rhodamine-B dye sensitized Co-doped TiO2 catalyst under visible light. Applied Catalysis B: Environmental, 2012, 111–112: 397–401

    Article  Google Scholar 

  173. Li Y, Xie C, Peng S, Lu G, Li S. Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282(1–2): 117–123

    Article  CAS  Google Scholar 

  174. Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab S S, Lai Y. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Advanced Science, 2017, 4(1): 1600152

    Article  PubMed  Google Scholar 

  175. Perera S D, Mariano R G, Vu K, Nour N, Seitz O, Chabal Y, Balkus K J Jr. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2012, 2(6): 949–956

    Article  CAS  Google Scholar 

  176. Jo Y K, Lee J M, Son S, Hwang S J. 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40: 150–190

    Article  CAS  Google Scholar 

  177. Liang S, Liang R, Wen L, Yuan R, Wu L, Fu X. Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Applied Catalysis B: Environmental, 2012, 125: 103–110

    Article  CAS  Google Scholar 

  178. Dong K, Le T A, Nakibli Y, Schleusener A, Wächtler M, Amirav L. Molecular metallocorrole-nanorod photocatalytic system for sustainable hydrogen production. ChemSusChem, 2022, 15(17): e202200804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Tongying P, Vietmeyer F, Aleksiuk D, Ferraudi G J, Krylova G, Kuno M. Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale, 2014, 6(8): 4117–4124

    Article  PubMed  ADS  CAS  Google Scholar 

  180. Xu J, Qin T, Chen W, Lv J, Zeng X, Sun J, Li Y, Zhou J. Synergizing piezoelectric and plasmonic modulation of Ag/BiFeO3 fibrous heterostructure toward boosted photoelectrochemical energy conversion. Nano Energy, 2021, 89:106317

    Article  CAS  Google Scholar 

  181. Xu S, Guo L, Sun Q, Wang Z. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Advanced Functional Materials, 2019, 29(13): 1808737

    Article  Google Scholar 

  182. Jiang Z, Tan X, Huang Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: state-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806: 150924

    Article  PubMed  ADS  CAS  Google Scholar 

  183. Li R, Zhang F, Wang D, Yang J, Li M, Zhu J, Zhou X, Han H, Li C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432

    Article  PubMed  ADS  Google Scholar 

  184. Huang M, Lian J, Si R, Wang L, Pan X, Liu P. Spatial separation of electrons and holes among ZnO polar {0001} and {\(10\overline {10} \)} facets for enhanced photocatalytic performance. ACS Omega, 2022, 7(30): 26844–26852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Wang W, Zhou Y, Wen Y, Ni Y, Lu C, Xu Z. Effect of destructive {001}-{101} heterojunction on separating photogenerated electrons and holes of anatase TiO2. Materials Letters, 2015, 158: 29–31

    Article  CAS  Google Scholar 

  186. Hu C, Tu S, Tian N, Ma T, Zhang Y, Huang H. Photocatalysis enhanced by external fields. Angewandte Chemie International Edition, 2021, 60(30): 16309–16328

    Article  PubMed  CAS  Google Scholar 

  187. Jiang Z, Wang H, Huang H, Cao C. Photocatalysis enhancement by electric field: TiO2 thin film for degradation of dye X-3B. Chemosphere, 2004, 56(5): 503–508

    Article  PubMed  ADS  CAS  Google Scholar 

  188. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641

    Article  PubMed  ADS  CAS  Google Scholar 

  189. Xiong J, Di J, Xia J, Zhu W, Li H. Surface defect engineering in 2D nanomaterials for photocatalysis. Advanced Functional Materials, 2018, 28(39): 1801983

    Article  Google Scholar 

  190. Di J, Zhu C, Ji M, Duan M, Long R, Yan C, Gu K, Xiong J, She Y, Xia J, et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angewandte Chemie International Edition, 2018, 57(45): 14847–14851

    Article  PubMed  CAS  Google Scholar 

  191. Maarisetty D, Mary R, Hang D R, Mohapatra P, Baral S S. The role of material defects in the photocatalytic CO2 reduction: interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64: 102175

    Article  CAS  Google Scholar 

  192. Yan X, Zhuang L, Zhu Z, Yao X. Defect engineering and characterization of active sites for efficient electrocatalysis. Nanoscale, 2021, 13(6): 3327–3345

    Article  PubMed  CAS  Google Scholar 

  193. Niu P, Liu G, Cheng H. Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. Journal of Physical Chemistry C, 2012, 116(20): 11013–11018

    Article  CAS  Google Scholar 

  194. Li H, Li J, Ai Z, Jia F, Zhang L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138

    Article  PubMed  ADS  CAS  Google Scholar 

  195. Xue X, Chen R, Chen H, Hu Y, Ding Q, Liu Z, Ma L, Zhu G, Zhang W, Yu Q, et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Letters, 2018, 18(11): 7372–7377

    Article  PubMed  ADS  CAS  Google Scholar 

  196. Zafar Z, Yi S, Li J, Li C, Zhu Y, Zada A, Yao W, Liu Z, Yue X. Recent development in defects engineered photocatalysts: an overview of the experimental and theoretical strategies. Energy & Environmental Science, 2022, 5(1): 68–114

    CAS  Google Scholar 

  197. Jiang Z, Lü C, Wu H. Photoregeneration of NADH using carbon-containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44(12): 4165–4170

    Article  CAS  Google Scholar 

  198. Suzuki T M, Yoshino S, Takayama T, Iwase A, Kudo A, Morikawa T. Z-schematic and visible-light-driven CO2 reduction using H2O as an electron donor by a particulate mixture of a Ru-complex/(CuGa)1−xZn2xS2 hybrid catalyst, BiVO4 and an electron mediator. Chemical Communications, 2018, 54(72): 10199–10202

    Article  PubMed  CAS  Google Scholar 

  199. Mifsud M, Gargiulo S, Iborra S, Arends I W C E, Hollmann F, Corma A. Photobiocatalytic chemistry of oxidoreductases using water as the electron donor. Nature Communications, 2014, 5(1): 3145

    Article  PubMed  ADS  Google Scholar 

  200. Ruckebusch C, Sliwa M, Pernot P, de Juan A, Tauler R. Comprehensive data analysis of femtosecond transient absorption spectra: a review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(1): 1–27

    Article  CAS  Google Scholar 

  201. Jiang Y, Long R, Xiong Y. Regulating C-C coupling in thermocatalytic and electrocatalytic COx conversion based on surface science. Chemical Science, 2019, 10(31): 7310–7326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Ma W, Chen Z, Bu J, Liu Z, Li J, Yan C, Cheng L, Zhang L, Zhang H, Zhang J, et al. n-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon. Journal of Materials Chemistry A, 2022, 10(11): 6122–6128

    Article  CAS  Google Scholar 

  203. Wang L, Bao H, Lin H, Yang C, Song J, Huang X. An easy fabricated biomimetic leaf microreactor for photocatalytic nicotinamide adenine dinucleotide (NADH) regeneration. Applied Catalysis A: General, 2022, 641: 118685

    Article  CAS  Google Scholar 

  204. Huang Z, Wang L, Yang C, Chen J, Zhao G, Huang X. A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. Lab on a Chip, 2022, 22(15): 2878–2885

    Article  PubMed  CAS  Google Scholar 

  205. Ren S, Wang Z, Bilal M, Feng Y, Jiang Y, Jia S, Cui J. Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. International Journal of Biological Macromolecules, 2020, 155: 110–118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22272164 and 22332002) and the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (Grant No. 2022R01007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Yang.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Wang, M., Dai, H. et al. Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system. Front. Chem. Sci. Eng. 18, 37 (2024). https://doi.org/10.1007/s11705-024-2398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2398-0

Keywords

Navigation