Skip to main content
Log in

A novel silver-doped nickel oxide hole-selective contact for crystalline silicon heterojunction solar cells

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Based on its band alignment, p-type nickel oxide (NiOx) is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells, as it has a small ΔEV and large ΔEC with crystalline silicon. Herein, to overcome the poor hole selectivity of stoichiometric NiOx due to its low carrier concentration and conductivity, silver-doped nickel oxide (NiOx:Ag) hole transport layers with high carrier concentrations were prepared by co-sputtering high-purity silver sheets and pure NiOx targets. The improved electrical conductivity of NiOx was attributed to the holes generated by the Ag+ substituents for Ni2+, and moreover, the introduction of Ag+ also increased the amount of Ni3+ present, both of which increased the carrier concentration in NiOx. Ag+ doping also reduced the c-Si/NiOx contact resistivity and improved the hole-selective contact with NiOx. Furthermore, the problems of particle clusters and interfacial defects on the surfaces of NiOx:Ag films were solved by UV-ozone oxidation and high-temperature annealing, which facilitated separation and transport of carriers at the c-Si/NiOx interface. The constructed c-Si/NiOx: Ag solar cell exhibited an increase in open-circuit voltage from 490 to 596 mV and achieved a conversion efficiency of 14.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nie S, Chen C, Zhu C. Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Frontiers of Chemical Science and Engineering, 2023, 17(7): 795–797

    Article  CAS  Google Scholar 

  2. Hanak D P, Manovic V. Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future. Frontiers of Chemical Science and Engineering, 2020, 14(3): 453–459

    Article  CAS  Google Scholar 

  3. Santos M P, Hanak D P. Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1291–1317

    Article  Google Scholar 

  4. Liu F, Lai Y, Zhao B, Bradley R, Wu W. Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653

    Article  CAS  Google Scholar 

  5. Wang X, Zhang Z, Guo Z, Su C, Sun L. Energy structure transformation in the context of carbon neutralization: evolutionary game analysis based on inclusive development of coal and clean energy. Journal of Cleaner Production, 2023, 398: 136626

    Article  Google Scholar 

  6. Atsu D, Seres I, Farkas I. The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary. Renewable & Sustainable Energy Reviews, 2021, 141: 110808

    Article  Google Scholar 

  7. Jaxa-Rozen M, Trutnevyte E. Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change, 2021, 11(3): 266–273

    Article  ADS  Google Scholar 

  8. Phong Pham D, Kim S, Dao V A, Kim Y, Yi J. Quantum-well passivating contact at polysilicon/crystalline silicon interface for crystalline silicon solar cells. Chemical Engineering Journal, 2022, 449: 137835

    Article  CAS  Google Scholar 

  9. Li L, Ying L, Lin Y, Li X, Zhou X, Du G, Gao Y, Liu W, Lu L, Wang J, et al. Effective hydrogenation strategies to boost efficiency over 20% for crystalline silicon solar cell with Al2O3/Cu2O passivating contact. Advanced Functional Materials, 2022, 32(43): 2207158

    Article  CAS  Google Scholar 

  10. Ballif C, Haug F J, Boccard M, Verlinden P J, Hahn G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7(8): 597–616

    Article  ADS  Google Scholar 

  11. Liu Y, Li Y, Wu Y, Yang G, Mazzarella L, Procel-Moya P, Tamboli A C, Weber K, Boccard M, Isabella O, et al. High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering R Reports, 2020, 142: 100579

    Article  Google Scholar 

  12. Essig S, Dréon J, Rucavado E, Mews M, Koida T, Boccard M, Werner J, Geissbuhler J, Löper P, Morales-Masis M, et al. Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics. Solar RRL, 2018, 2(4): 1700227

    Article  Google Scholar 

  13. Li L, Du G, Lin Y, Zhou X, Gu Z, Lu L, Liu W, Huang J, Wang J, Yang L, et al. NiOx/MoOx. bilayer as an efficient hole-selective contact in crystalline silicon solar cells. Cell Reports. Physical Science, 2021, 2(12): 100684

    Article  CAS  Google Scholar 

  14. Le A H T, Dréon J, Michel J I, Boccard M, Bullock J, Borojevic N, Hameiri Z. Temperature-dependent performance of silicon heterojunction solar cells with transition-metal-oxide-based selective contacts. Progress in Photovoltaics: Research and Applications, 2022, 30(8): 981–993

    Article  CAS  Google Scholar 

  15. Lu C, Rusli, Prakoso A B, Wang H. Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Materials Chemistry and Physics, 2021, 273: 125101

    Article  CAS  Google Scholar 

  16. Liu Z, Lin W, Chen Z, Chen D, Chen Y, Shen H, Liang Z. Enhanced hole extraction of WOx/V2Ox dopant-free contact for p-type silicon solar cell. Advanced Materials Interfaces, 2022, 9(10): 2102374

    Article  CAS  Google Scholar 

  17. Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 2020, 70: 104495

    Article  Google Scholar 

  18. Yang X, Xu H, Liu W, Bi Q, Xu L, Kang J, Hedhili M N, Sun B, Zhang X, De Wolf S. Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Advanced Electronic Materials, 2020, 6(8): 2000467

    Article  CAS  Google Scholar 

  19. Yang X, Liu W, Chen J, Sun Y. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells. Applied Physics Letters, 2018, 112(17): 173904

    Article  ADS  Google Scholar 

  20. Wang F, Duan H, Li X, Yang S, Han D, Yang L, Fan L, Liu H, Yang J, Rosei F. Gradient doped nickel oxide hole selective heterocontact and ultrathin passivation for silicon photovoltaics with efficiencies beyond 20%. Chemical Engineering Journal, 2022, 450: 138060

    Article  CAS  Google Scholar 

  21. Liu Y, Zhu J, Cai L, Yao Z, Duan C, Zhao Z, Zhao C, Mai W. Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells. Solar RRL, 2020, 4(1): 1900339

    Article  CAS  Google Scholar 

  22. Pan L, Liu C, Zhu H, Wan M, Li Y, Mai Y. Fine modification of reactively sputtered NiOx hole transport layer for application in all-inorganic CsPbI2Br perovskite solar cells. Solar Energy, 2020, 196: 521–529

    Article  CAS  ADS  Google Scholar 

  23. Du M, Zhao S, Duan L, Cao Y, Wang H, Sun Y, Wang L, Zhu X, Feng J, Liu L, et al. Surface redox engineering of vacuum-deposited NiOx. for top-performance perovskite solar cells and modules. Joule, 2022, 6(8): 1931–1943

    Article  CAS  Google Scholar 

  24. Li L, Zhang X, Zeng H, Zheng X, Zhao Y, Luo Y, Liu F, Li X. Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chemical Engineering Journal, 2022, 443: 136405

    Article  CAS  Google Scholar 

  25. Chen D, Liu Z, Zhou M, Wu P, Wei J. Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. Journal of Alloys and Compounds, 2018, 742: 918–927

    Article  CAS  Google Scholar 

  26. Zhang W, Shen H, Yin M, Lu L, Xu B, Li D. Heterostructure silicon solar cells with enhanced power conversion efficiency based on SiOx/Ni3+ self-doped NiOx passivating contact. ACS Omega, 2022, 7(19): 16494–16501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertrandie J, Han J, De Castro C S P, Yengel E, Gorenflot J, Anthopoulos T, Laquai F, Sharma A, Baran D. The energy level conundrum of organic semiconductors in solar cells. Advanced Materials, 2022, 34(35): 2202575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61974076), and the China National Key R&D Program (Grant No. 2022YFC2807104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengxin Liu or Wei Liu.

Ethics declarations

Competing interests The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, X., Zhang, Z. et al. A novel silver-doped nickel oxide hole-selective contact for crystalline silicon heterojunction solar cells. Front. Chem. Sci. Eng. 18, 19 (2024). https://doi.org/10.1007/s11705-024-2384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11705-024-2384-6

Keywords

Navigation