Skip to main content
Log in

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Breakage of the C–N bond is a structure sensitive process, and the catalyst size significantly affects its activity. On the active metal nanoparticle scale, the role of catalyst size in C–N bond cleavage has not been clearly elucidated. So, Ru catalysts with variable nanoparticle sizes were obtained by modulating the reduction temperature, and the catalytic activity was evaluated using 1,2,3,4-tetrahydroquinoline and o-propylaniline with different C–N bond hybridization patterns as reactants. Results showed a 13 times higher reaction rate for sp3-hybridized C–N bond cleavage than sp2-hybridized C–N bond cleavage, while the reaction rate tended to increase first and then decrease as the catalyst nanoparticle size increased. Different concentrations of terrace, step, and corner sites were found in different sizes of Ru nanoparticles. The relationship between catalytic site variation and C–N bond cleavage activity was further investigated by calculating the turnover frequency values for each site. This analysis indicates that the variation of different sites on the catalyst is the intrinsic factor of the size dependence of C–N bond cleavage activity, and the step atoms are the active sites for the C–N bond cleavage. When Ru nanoparticles are smaller than 1.9 nm, they have a strong adsorption effect on the reactants, which will affect the catalytic performance of the Ru catalyst. Furthermore, these findings were also confirmed on other metallic Pd/Pt catalysts. The role of step sites in C–N bond cleavage was proposed using the density function theory calculations. The reactants have stronger adsorption energies on the step atoms, and step atoms have d-band center nearer to the Fermi level. In this case, the interaction with the reactant is stronger, which is beneficial for activating the C–N bond of the reactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ferdous D, Dalai A K, Adjaye J. Hydrodenitrogenation and hydrodesulfurization of heavy gas oil using NiMo/Al2O3 catalyst containing boron: experimental and kinetic studies. Industrial & Engineering Chemistry Research, 2006, 45(2): 544–552

    Article  CAS  Google Scholar 

  2. Piskorz W, Adamski G, Kotarba A, Sojka Z, Sayag C, Djéga-Mariadassou G. Hydrodenitrogenation of indole over Mo2C catalyst: insights into mechanistic events through DFT modeling. Catalysis Today, 2007, 119(1–4): 39–43

    Article  CAS  Google Scholar 

  3. Ozkan U S, Ni S, Zhang L, Moctezuma E. Simultaneous hydrodesulfurization and hydrodenitrogenation of model compounds over nickel-molybdenum/γ-Al2O3 catalysts. Energy & Fuels, 1994, 8(1): 249–257

    Article  CAS  Google Scholar 

  4. Saleh T A, Al-Hammadi S A. A novel catalyst of nickel-loaded graphene decorated on molybdenum-alumina for the HDS of liquid fuels. Chemical Engineering Journal, 2021, 406: 125167

    Article  CAS  Google Scholar 

  5. Wang H M, Liang C H, Prins R. Hydrodenitrogenation of 2-methylpyridine and its intermediates 2-methylpiperidine and tetrahydro-methylpyridine over sulfided NiMo/γ-Al2O3. Journal of Catalysis, 2007, 251(2): 295–306

    Article  CAS  Google Scholar 

  6. Wang W, Li X, Sun Z C, Wang A J, Liu Y, Chen Y Y, Duan X P. Influences of calcination and reduction methods on the preparation of Ni2P/SiO2 and its hydrodenitrogenation performance. Applied Catalysis A, General, 2016, 509: 45–51

    Article  CAS  Google Scholar 

  7. Santen R. A V, Neurock M, Shetty S G. Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. Chemical Reviews, 2010, 110(4): 2005–2048

    Article  PubMed  Google Scholar 

  8. Eijsbouts S, Sudhakar C. Beer d V H J, Prins R. Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and o-propylaniline over carbon-supported transition metal sulfide catalysts. Journal of Catalysis, 1991, 127(2): 605–618

    Article  CAS  Google Scholar 

  9. Guo Y, He H, Liu X, Chen Z, Rioux R M, Janik M J, Savage P E. Ring-opening and hydrodenitrogenation of indole under hydrothermal conditions over Ni, Pt, Ru, and Ni-Ru bimetallic catalysts. Chemical Engineering Journal, 2021, 406: 126853

    Article  CAS  Google Scholar 

  10. Ledesma B C, Anunziata O A, Beltramone A R. HDN of indole over Ir-modified Ti-SBA-15. Applied Catalysis B: Environmental, 2016, 192(5): 220–233

    Article  CAS  Google Scholar 

  11. Guttieri M J, Maier W F. Selective cleavage of carbon-nitrogen bonds with platinum. Journal of Organic Chemistry, 1984, 49(16): 2875–2880

    Article  CAS  Google Scholar 

  12. Oyama S T. Novel catalysts for advanced hydroprocessing: transition metal phosphides. Journal of Catalysis, 2003, 216(1–2): 343–352

    Article  CAS  Google Scholar 

  13. Li Z, Ji S F, Liu Y W, Cao X, Tian S B, Chen Y J, Niu Z Q, Li Y D. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chemical Reviews, 2020, 120(2): 623–682

    Article  CAS  PubMed  Google Scholar 

  14. Liu L C, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, 118(10): 4981–5079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen W Y, Ji J, Feng X, Duan X Z, Qian G, Li P, Zhou X G, Chen D, Yuan W K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Journal of the American Chemical Society, 2014, 136(48): 16736–16739

    Article  CAS  PubMed  Google Scholar 

  16. Yang F F, Liu D, Zhao Y T, Wang H, Han J Y, Ge Q F, Zhu X L. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catalysis, 2018, 8(3): 1672–1682

    Article  CAS  Google Scholar 

  17. Ma J Y, Tan X J, Zhang Q Q, Wang Y, Zhang J L, Wang L Z. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catalysis, 2021, 11(6): 3352–3360

    Article  CAS  Google Scholar 

  18. Tsung C K, Kuhn J N, Huang W Y, Aliaga C, Hung L I, Somorjai G A, Yang P D. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. Journal of the American Chemical Society, 2009, 131(16): 5816–5822

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Li W Y, Feng J, Gao X. Molecular insights into the hydrodenitrogenation mechanism of pyridine over Pt/γ-Al2O3 catalysts. Molecular Catalysis, 2020, 495: 111148

    Article  CAS  Google Scholar 

  20. Liuzzi D, Pérez-Alonso F J, García-García F J, Calle-Vallejo F, Fierro J L G, Rojas S. Identifying the time-dependent predominance regimes of step and terrace sites for the Fischer-Tropsch synthesis on ruthenium based catalysts. Catalysis Science & Technology, 2016, 6(17): 6495–6503

    Article  CAS  Google Scholar 

  21. Chiu C C, Genest A, Borgna A, Rösch N. C–O cleavage of aromatic oxygenates over ruthenium catalysts. A computational study of reactions at step sites. Physical Chemistry Chemical Physics, 2015, 17(23): 15324–15330

    CAS  PubMed  Google Scholar 

  22. Kuhn J N, Huang W, Tsung C K, Zhang Y, Somorjai G A. Structure sensitivity of carbon-nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. Journal of the American Chemical Society, 2008, 130(43): 14026–14027

    Article  CAS  PubMed  Google Scholar 

  23. Bachrach M, Marks T J, Notestein J M. C–N bond hydrogenolysis of aniline and cyclohexylamine over TaOx-Al2O3. New Journal of Chemistry, 2016, 40(7): 6001–6004

    Article  CAS  Google Scholar 

  24. Sureshkumar K, Shanthi K, Sasirekha N R, Jegan J, Sardhar Basha S J. A study on catalytic activity of modified Ni-Re/Al-SBA-15 catalyst for hydrodenitrogenation of o-toluidine. International Journal of Hydrogen Energy, 2020, 45(7): 4328–4340

    Article  CAS  Google Scholar 

  25. Sardhar Basha S J, Sasirekha N R, Maheswari R, Shanthi K. Mesoporous H-AlMCM-41 supported NiO-MoO3 catalysts for hydrodenitrogenation of o-toluidine. Applied Catalysis A, General, 2006, 308: 91–98

    Article  CAS  Google Scholar 

  26. Carballo J M G, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, Fierro J L G. Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis. Journal of Catalysis, 2011, 284(1): 102–108

    Article  CAS  Google Scholar 

  27. Murata K, Onoda J, Yamamoto Y, Oda A, Ohyama J, Satsuma A. Enhancement of toluene hydrogenation activity of supported Pt nanoparticles with increasing the crystallinity of Pt. Applied Catalysis A, General, 2022, 629: 118425

    Article  CAS  Google Scholar 

  28. Iwamoto M, Akiyama M, Aihara K, Deguchi T. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catalysis, 2017, 7(10): 6924–6929

    Article  CAS  Google Scholar 

  29. Zhao Z S, Wang M, Cui L, He J L, Yu D L, Tian Y J. Semiconducting superhard ruthenium monocarbide. Journal of Physical Chemistry C, 2010, 114(21): 9961–9964

    Article  CAS  Google Scholar 

  30. Zhang C Z, Kuang X Y, Jin Y Y, Lu C, Zhou D W, Li P F, Bao G, Hermann A. Prediction of stable ruthenium silicides from first-principles calculations: stoichiometries, crystal structures, and physical properties. ACS Applied Materials & Interfaces, 2015, 7(48): 26776–26782

    Article  CAS  Google Scholar 

  31. Prins R. Catalytic hydrodenitrogenation. Advances in Catalysis, 2001, 46: 399–464

    CAS  Google Scholar 

  32. Wilson O M, Knecht M R, Garcia-Martinez J C, Crooks R M. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. Journal of the American Chemical Society, 2006, 128(14): 4510–4511

    Article  CAS  PubMed  Google Scholar 

  33. Hardeveld R V, Hartog F. The statistics of surface atoms and surface sites on metal crystals. Surface Science, 1969, 15(2): 189–230

    Article  Google Scholar 

  34. Kolpin A, Jones G, Jones S, Zheng W, Cookson J, York A P E, Collier P J, Tsang S C E. Quantitative differences in sulfur poisoning phenomena over ruthenium and palladium: an attempt to deconvolute geometric and electronic poisoning effects using model catalysts. ACS Catalysis, 2016, 7(1): 592–605

    Article  Google Scholar 

  35. Abdel-Mageed A M, Widmann D, Olesen S E, Chorkendorff I, Biskupek J, Behm R J. Selective CO methanation on Ru/TiO2 catalysts: role and influence of metal-support interactions. ACS Catalysis, 2015, 5(11): 6753–6763

    Article  CAS  Google Scholar 

  36. Peng X B, Chen X C, Zhou Y L, Sun F X, Zhang T H, Zheng L R, Jiang L L, Wang X Y. Size-dependent activity of supported Ru catalysts for ammonia synthesis at mild conditions. Journal of Catalysis, 2022, 408: 98–108

    Article  CAS  Google Scholar 

  37. Zheng J W, Liao F L, Wu S, Jones G, Chen T Y, Fellowes J, Sudmeier T, McPherson I J, Wilkinson I, Tsang S C E. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angewandte Chemie International Edition, 2019, 58(48): 17335–17341

    Article  CAS  PubMed  Google Scholar 

  38. Chin S Y, Williams C T, Amiridis M D. FTIR studies of CO adsorption on Al2O3- and SiO2-supported Ru catalysts. Journal of Physical Chemistry B, 2006, 110(2): 871–882

    Article  CAS  PubMed  Google Scholar 

  39. Kim Y K, Gregg A, Morgan J, John T, Yates J. Role of atomic step defect sites on the catalytic oxidation of carbon monoxide: comparison between Ru(001) and Ru(109) single-crystal surfaces. Journal of Physical Chemistry C, 2007, 111(8): 3366–3368

    Article  CAS  Google Scholar 

  40. Li D L, Lu M M, Aragaki K, Koike M, Nakagawa Y, Tomishige K. Characterization and catalytic performance of hydrotalcite-derived Ni-Cu alloy nanoparticles catalysts for steam reforming of 1-methylnaphthalene. Applied Catalysis B: Environmental, 2016, 192: 171–181

    Article  CAS  Google Scholar 

  41. Oyama S T, Lee Y K. Mechanism of hydrodenitrogenation on phosphides and sulfides. Journal of Physical Chemistry B, 2005, 109(6): 2109–2119

    Article  CAS  PubMed  Google Scholar 

  42. Nørskov J K. Electronic factors in catalysis. Progress in Surface Science, 1991, 38(2): 103–144

    Article  Google Scholar 

  43. Liu J, Li W Y, Feng J, Gao X, Luo Z Y. Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts. Chemical Engineering Science, 2019, 207: 1085–1095

    Article  CAS  Google Scholar 

  44. Liu J, Li W Y, Feng J, Gao X. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/γ-Al2O3 catalysts. Catalysis Today, 2020, 371: 247–257

    Article  Google Scholar 

  45. Ledoux M J, Djellouli B. Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon. Journal of Catalysis, 1989, 115(2): 580–590

    Article  CAS  Google Scholar 

  46. Zhang Z L, Zhu Y H, Asakura H, Zhang B, Zhang J G, Zhou M X, Han Y, Tanaka T, Wang A Q, Zhang T, Yan N. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8(1): 16100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hofmann T, Yu T H, Folse M, Weinhardt L, Bär M, Zhang Y, Merinov B V, Myers D J, Goddard W AIII, Heske C. Using photoelectron spectroscopy and quantum mechanics to determine d-band energies of metals for catalytic applications. Journal of Physical Chemistry C, 2012, 116(45): 24016–24026

    Article  CAS  Google Scholar 

  48. Kim M, Park G H, Seo S, Bui V Q, Cho Y, Hong Y, Kawazoe Y, Lee H. Uncovering the role of countercations in ligand exchange of WSe2: tuning the d-band center toward improved hydrogen desorption. ACS Applied Materials & Interfaces, 2021, 13(9): 11403–11413

    Article  CAS  Google Scholar 

  49. Henckel D A, Lenz O, Cossairt B M. Effect of ligand coverage on hydrogen evolution catalyzed by colloidal WSe2. ACS Catalysis, 2017, 7(4): 28152820

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of National Natural Science Foundation of China (Grant No. 22038008), the Science and Technology Innovation Project of National Energy Group China Shenhua Coal to Oil Chemical Co. (Grant No. MZYHG-2021-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Feng.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

11705_2023_2337_MOESM1_ESM.pdf

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, YF., Feng, J., Song, YC. et al. Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study of active sites. Front. Chem. Sci. Eng. 17, 1986–2000 (2023). https://doi.org/10.1007/s11705-023-2337-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2337-5

Keywords

Navigation