Skip to main content
Log in

NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The electrocatalyst NiFeRuOx/NF, comprised of NiFeRuOx nanosheets grown on Ni foam, was synthesized using a hydrothermal process followed by thermal annealing. NiFeRuOx/NF displays high electrocatalytic activity and stability for overall alkaline seawater splitting: 98 mV@ 10 mA·cm−2 in hydrogen evolution reaction, 318 mV@ 50 mA·cm−2 in oxygen evolution reaction, and a cell voltage of 1.53 V@ 10 mA·cm−2, as well as 20 h of durability. A solar-driven system containing such a bifunctional NiFeRuOx/NF has an almost 100% Faradaic efficiency. The NiFeRuOx coating around Ni foam is an anti-corrosion layer and also a critical factor for enhancement of bifunctional performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dresp S, Dionigi F, Klingenhof M, Strasser P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Letters, 2019, 4(4): 933–942

    Article  CAS  Google Scholar 

  2. Kuang Y, Kenney M J, Meng Y T, Hung W H, Liu Y J, Huang J E, Prasanna R, Li P S, Li Y P, Wang L, Lin M C, McGehee M D, Sun X, Dai H. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu X H, Zhou S, Wang Z Y, Liu J S, Pei W, Yang P J, Zhao J J, Qiu J S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333

    Article  Google Scholar 

  4. Hisatomi T, Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2019, 2(5): 387–399

    Article  CAS  Google Scholar 

  5. Xiang C X, Weber A Z, Ardo S, Berger A, Chen Y K, Coridan R, Fountaine K T, Haussener S, Hu S, Liu R, Lewis N S, Modestino M A, Shaner M M, Singh M R, Stevens J C, Sun K, Walczak K. Modeling, simulation, and implementation of solar-driven watersplitting devices. Angewandte Chemie International Edition, 2016, 55(42): 12974–12988

    Article  CAS  PubMed  Google Scholar 

  6. Li F S, Xu R, Nie C M, Wu X J, Zhang P L, Duan L L, Sun L C. Dye-sensitized LaFeO3 photocathode for solar-driven H2 generation. Chemical Communications, 2019, 55(86): 12940–12943

    Article  CAS  PubMed  Google Scholar 

  7. Long X, Li J K, Xiao S, Yan K Y, Wang Z L, Chen H N, Yang S H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angewandte Chemie International Edition, 2014, 53(29): 7584–7588

    Article  CAS  PubMed  Google Scholar 

  8. Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 2013, 6(10): 2921–2924

    Article  CAS  Google Scholar 

  9. Jiang J, Liu J P, Zhou W W, Zhu J H, Huang X T, Qi X Y, Zhang H, Yu T. CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy & Environmental Science, 2011, 4(12): 5000–5007

    Article  CAS  Google Scholar 

  10. Hsu S H, Miao J W, Zhang L P, Gao J J, Wang H M, Tao H B, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261

    Article  Google Scholar 

  11. Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xiao Y X, Ying J, Tian G, Yang X, Zhang Y X, Chen J B, Wang Y, Symes M D, Ozoemena K I, Wu J S, Yang X Y. Hierarchically fractal PtPdCu sponges and their directed mass- and electron-transfer effects. Nano Letters, 2021, 21(18): 7870–7878

    Article  CAS  PubMed  Google Scholar 

  13. Wang H Y, Weng C C, Ren J T, Yuan Z Y. An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1408–1426

    Article  Google Scholar 

  14. Hu R G, Liu F Y, Qiu H Q, Miao H, Wang Q, Zhang H C, Wang F, Yuan J L. High-property anode catalyst compositing Co-based perovskite and NiFe-layered double hydroxide for alkaline seawater splitting. Processes, 2022, 10(4): 668

    Article  CAS  Google Scholar 

  15. Jiang S S, Liu Y, Qiu H, Su C, Shao Z P. High selectivity electrocatalysts for oxygen evolution reaction and anti-chlorine corrosion strategies in seawater splitting. Catalysts, 2022, 12(3): 261

    Article  CAS  Google Scholar 

  16. Li Y C, Wu X Y, Wang J P, Wei H X, Zhang S Y, Zhu S L, Li Z Y, Wu S L, Jiang H, Liang Y Q. Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochimica Acta, 2021, 390: 138833

    Article  CAS  Google Scholar 

  17. Fang F, Wang Y, Shen L W, Tian G, Cahen D, Xiao Y X, Chen J B, Wu S M, He L, Ozoemena K I, Symes M D, Yang X Y. Interfacial carbon makes nano-particulate RuO2 an efficient, stable, pH-universal catalyst for splitting of seawater. Small, 2022, 18(42): 2203778

    Article  CAS  Google Scholar 

  18. Higgins S. Regarding ruthenium. Nature Chemistry, 2010, 2(12): 1100

    Article  CAS  PubMed  Google Scholar 

  19. Yu J, He Q J, Yang G M, Zhou W, Shao Z P, Ni M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 2019, 9(11): 9973–10011

    Article  CAS  Google Scholar 

  20. Jia M P, Shen L, Tian G, de Torresi S I C, Symes M D, Yang X Y. Superior electrocatalysis delivered by a directional electron transfer cascade in hierarchical CoNi/Ru@C. Chemistry, an Asian Journal, 2022, 17(17): e202200449

    Article  CAS  PubMed  Google Scholar 

  21. Chen G B, Wang T, Zhang J, Liu P, Sun H J, Zhuang X D, Chen M W, Feng X L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Advanced Materials, 2018, 30(10): 1706279

    Article  Google Scholar 

  22. Zhang X Y, Wu Z Z, Wang D Z. Oxygen-incorporated defect-rich MoP for highly efficient hydrogen production in both acidic and alkaline media. Electrochimica Acta, 2018, 281: 540–548

    Article  CAS  Google Scholar 

  23. Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2013, 135(47): 17881–17888

    Article  CAS  PubMed  Google Scholar 

  24. Han M M, Yan G. Prussian blue analogue-derived porous bimetallic oxides Fe3O4-NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74(12): 4473–4480

    Article  CAS  Google Scholar 

  25. Zhu Y X, Jiang M Y, Liu M, Wu L K, Hou G Y, Tang Y P. An Fe-V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction. Nanoscale, 2020, 12(6): 3803–3811

    Article  CAS  PubMed  Google Scholar 

  26. Yan X D, Tian L H, Li K X, Atkins S, Zhao H F, Murowchick J, Liu L, Chen X B. FeNi3/NiFeOx nanohybrids as highly efficient bifunctional electrocatalysts for overall water splitting. Advanced Materials Interfaces, 2016, 3(22): 1600368

    Article  Google Scholar 

  27. Mansour A N. Characterization of NiO by XPS. Surface Science Spectra, 1994, 3(3): 231–238

    Article  CAS  Google Scholar 

  28. Liang C W, Zou P C, Nairan A, Zhang Y Q, Liu J X, Liu K W, Hu S Y, Kang F Y, Fan H J, Yang C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy & Environmental Science, 2020, 13(1): 86–95

    Article  CAS  Google Scholar 

  29. Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6(1): 6616

    Article  CAS  PubMed  Google Scholar 

  30. Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angewandte Chemie International Edition, 2019, 58(5): 1252–1265

    Article  CAS  PubMed  Google Scholar 

  31. Gao X Y, Chen J, Sun X Z, Wu B F, Li B, Ning Z C, Li J, Wang N. Ru/RuO2 nanoparticle composites with N-doped reduced graphene oxide as electrocatalysts for hydrogen and oxygen evolution. ACS Applied Nano Materials, 2020, 3(12): 12269–12277

    Article  CAS  Google Scholar 

  32. Shen L W, Wang Y, Chen J B, Tian G, Xiong K Y, Janiak C, Cahen D, Yang X Y. A RuCoBO nanocomposite for highly efficient and stable electrocatalytic seawater splitting. Nano Letters, 2023, 23(3): 1052–1060

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z F, Shen Q Q, Xue J B, Guan R F, Li Q, Liu X G, Jia H S, Wu Y C. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chemical Engineering Journal, 2020, 402: 126151

    Article  CAS  Google Scholar 

  34. Dong G F, Fang M, Zhang J S, Wei R J, Shu L, Liang X G, Yip S P, Wang F Y, Guan L H, Zheng Z J, Ho J C. In situ formation of highly active Ni-Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11009–11015

    Article  CAS  Google Scholar 

  35. Tian X Y, Zhao P C, Sheng W C. Hydrogen evolution and oxidation: mechanistic studies and material advances. Advanced Materials, 2019, 31(31): 1808066

    Article  Google Scholar 

  36. Liu Y, Yu H Z, Wang Y, Tian G, Zhou L, de Torresi S I C, Ozoemena K I, Yang X Y. Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58(49): 6882–6885

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366

    Article  CAS  Google Scholar 

  38. Ren J T, Chen L, Wang H Y, Tian W W, Zhang X, Ma T Y, Zhou Z, Yuan Z Y. Inducing electronic asymmetricity on Ru clusters to boost key reaction steps in basic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 327: 122466

    Article  CAS  Google Scholar 

  39. Subbaraman R, Tripkovic D, Strmcnik D, Chang K C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256–1260

    Article  CAS  PubMed  Google Scholar 

  40. Ren J T, Wang L, Chen L, Song X L, Kong Q H, Wang H Y, Yuan Z Y. Interface metal oxides regulating electronic state around nickel species for efficient alkaline hydrogen electrocatalysis. Small, 2023, 19(5): 2206196

    Article  CAS  Google Scholar 

  41. Cao D, Xu H X, Cheng D J. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Advanced Energy Materials, 2020, 10(9): 1903038

    Article  CAS  Google Scholar 

  42. Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316(5825): 732–735

    Article  CAS  PubMed  Google Scholar 

  43. Ren J T, Yuan G G, Weng C C, Chen L, Yuan Z Y. Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10(22): 10620–10628

    Article  CAS  PubMed  Google Scholar 

  44. Ren J T, Yao Y L, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643

    Article  CAS  Google Scholar 

  45. Li J Y, Yan M, Zhou X M, Huang Z Q, Xia Z M, Chang C R, Ma Y Y, Qu Y Q. Mechanistic insights on ternary Ni2xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796

    Article  CAS  Google Scholar 

  46. Samanta R, Panda P, Mishra R, Barman S. IrO2-modified RuO2 nanowires/nitrogen-doped carbon composite for effective overall water splitting in all pH. Energy & Fuels, 2022, 36(2): 1015–1026

    Article  CAS  Google Scholar 

  47. Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

    Article  CAS  PubMed  Google Scholar 

  48. Huang S C, Meng Y Y, He S M, Goswami A, Wu Q L, Li J H, Tong S F, Asefa T, Wu M M. N-, O-, and S-tridoped carbon-encapsulated Co9S8 nanomaterials: efficient bifunctional electrocatalysts for overall water splitting. Advanced Functional Materials, 2017, 27(17): 1606585

    Article  Google Scholar 

  49. Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408

    Article  CAS  Google Scholar 

  50. Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136(18): 6744–6753

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by National Key R&D Program of China (Grant Nos. 2022YFB3805600 and 2022YFB3805604), South Africa’s National Research Foundation through the SARChI Chair in Materials Electrochemistry and Energy Technologies (Grant No. 132739), National Natural Science Foundation of China (Grant No. 22293020), National 111 project (Grant No. B20002), Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R52), Sino-German Centre’s COVID-19 Related Bilateral Collaborative Project (Grant No. C-0046), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010137), Shenzhen Science and Technology Program (Grant Nos. GJHZ20210705143204014, JCYJ20210324142010029, and KCXFZ20211020170006010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yu Yang.

Ethics declarations

The authors declare that they have no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, L., Wang, Y. et al. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting. Front. Chem. Sci. Eng. 17, 1698–1706 (2023). https://doi.org/10.1007/s11705-023-2334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2334-8

Keywords

Navigation