Skip to main content
Log in

Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Direct dehydrogenation with high selectivity and oxidative dehydrogenation with low thermal limit has been regarded as promising methods to solve the increasing demands of light olefins and styrene. Metal-based catalysts have shown remarkable performance for these reactions, such as Pt, CrOx, Co, ZrOx, Zn and V. Compared with metal-based catalysts, carbon materials with stable structure, rich pore texture and large surface area, are ideal platforms as the catalysts and the supports for dehydrogenation reactions. In this review, carbon materials applied in direct dehydrogenation and oxidative dehydrogenation reactions including ordered mesoporous carbon, carbon nanodiamond, carbon nanotubes, graphene and activated carbon, are summarized. A general introduction to the dehydrogenation mechanism and active sites of carbon catalysts is briefly presented to provide a deep understanding of the carbon-based materials used in dehydrogenation reactions. The unique structure of each carbon material is presented, and the diversified synthesis methods of carbon catalysts are clarified. The approaches for promoting the catalytic activity of carbon catalysts are elaborated with respect to preparation method optimization, suitable structure design and heteroatom doping. The regeneration mechanism of carbon-based catalysts is discussed for providing guidance on catalytic performance enhancement. In addition, carbon materials as the support of metal-based catalysts contribute to exploiting the excellent catalytic performance of catalysts due to superior structural characteristics. In the end, the challenges in current research and strategies for future improvements are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sheng J, Yan B, Lu W D, Qiu B, Gao X Q, Wang D, Lu A H. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chemical Society Reviews, 2021, 50(2): 1438–1468

    Article  CAS  PubMed  Google Scholar 

  2. Sattler J J, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen B M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653

    Article  CAS  PubMed  Google Scholar 

  3. Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catalysis Science & Technology, 2017, 7(21): 4905–4923

    Article  CAS  Google Scholar 

  4. Yarulina I, De Wispelaere K, Bailleul S, Goetze J, Radersma M, Abou-Hamad E, Vollmer I, Goesten M, Mezari B, Hensen E J M, Martínez-Espín J S, Morten M, Mitchell S, Perez-Ramirez J, Olsbye U, Weckhuysen B M, Van Speybroeck V, Kapteijn F, Gascon J. Publisher correction: structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 897

    Article  CAS  PubMed  Google Scholar 

  5. Munnik P, de Jongh P E, de Jong K P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis. Journal of the American Chemical Society, 2014, 136(20): 7333–7340

    Article  CAS  PubMed  Google Scholar 

  6. Weststrate C J, van de Loosdrecht J, Niemantsverdriet J W. Spectroscopic insights into cobalt-catalyzed Fischer–Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. Journal of Catalysis, 2016, 342: 1–16

    Article  CAS  Google Scholar 

  7. Chen C, Hu Z P, Ren J T, Zhang S, Wang Z, Yuan Z Y. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476: 110508

    Article  CAS  Google Scholar 

  8. Chen C, Sun M L, Hu Z P, Ren J T, Zhang S M, Yuan Z Y. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science & Technology, 2019, 9(8): 1979–1988

    Article  Google Scholar 

  9. Hu Z P, Wang Y, Yang D, Yuan Z Y. CrOx supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47: 225–233

    Article  Google Scholar 

  10. Wang Y S, Hu Z P, Tian W W, Gao L J, Wang Z, Yuan Z Y. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science & Technology, 2019, 9(24): 6993–7002

    Article  CAS  Google Scholar 

  11. Wang Y, Suo Y, Lv X, Wang Z, Yuan Z Y. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 593: 304–314

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Suo Y, Ren J T, Wang Z, Yuan Z Y. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594: 113–121

    Article  CAS  PubMed  Google Scholar 

  13. Guo F, Yang P, Pan Z, Cao X N, Xie Z, Wang X. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2017, 56(28): 8231–8235

    Article  CAS  PubMed  Google Scholar 

  14. Yao R, Herrera J E, Chen L H, Chin Y H C. Generalized mechanistic framework for ethane dehydrogenation and oxidative dehydrogenation on molybdenum oxide catalysts. ACS Catalysis, 2020, 10(12): 6952–6968

    Article  CAS  Google Scholar 

  15. Ye L, Duan X, Xie K. Electrochemical oxidative dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. Angewandte Chemie International Edition, 2021, 60(40): 21746–21750

    Article  CAS  PubMed  Google Scholar 

  16. Bikbaeva V, Perez O, Nesterenko N, Valtchev V. Ethane oxidative dehydrogenation with CO2 on thiogallates. Inorganic Chemistry Frontiers, 2022, 9(20): 5181–5187

    Article  CAS  Google Scholar 

  17. LiBretto N J, Yang C, Ren Y, Zhang G, Miller J T. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chemistry of Materials, 2019, 31(5): 1597–1609

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhou Y, Huang L, Zhou S, Sheng X, Wang Q, Zhang C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chemical Engineering Journal, 2015, 270: 352–361

    Article  CAS  Google Scholar 

  19. Li X, Wang P, Wang H, Li C. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation. Applied Surface Science, 2018, 441: 688–693

    Article  CAS  Google Scholar 

  20. Schreiber M W, Plaisance C P, Baumgartl M, Reuter K, Jentys A, Bermejo-Deval R, Lercher J A. Lewis-bronsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859

    Article  CAS  PubMed  Google Scholar 

  21. Han S L, Otroshchenko T, Zhao D, Lund H, Rockstroh N, Vuong T H, Rabeah J, Rodemerck U, Linke D, Gao M L, Jiang G, Kondratenko E V. The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Applied Catalysis A: General, 2020, 590: 117350

    Article  CAS  Google Scholar 

  22. Jeon N, Oh J, Tayal A, Jeong B, Seo O, Kim S, Chung I, Yun Y. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation. Journal of Catalysis, 2021, 404: 1007–1016

    Article  CAS  Google Scholar 

  23. Yuan Y, Lobo R F, Xu B. Ga2O22+ stabilized by paired framework Al atoms in MFI: a highly reactive site in nonoxidative propane dehydrogenation. ACS Catalysis, 2022, 12(3): 1775–1783

    Article  CAS  Google Scholar 

  24. Hu Z P, Qin G, Han J, Zhang W, Wang N, Zheng Y, Jiang Q, Ji T, Yuan Z Y, Xiao J, Wei Y, Liu Z. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137

    Article  CAS  PubMed  Google Scholar 

  25. Najari S, Saeidi S, Concepcion P, Dionysiou D D, Bhargava S K, Lee A F, Wilson K. Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50(7): 4564–4605

    Article  CAS  PubMed  Google Scholar 

  26. Atanga M A, Rezaei F, Jawad A, Fitch M, Rownaghi A A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Applied Catalysis B: Environmental, 2018, 220: 429–445

    Article  CAS  Google Scholar 

  27. Djinović P, Zavašnik J, Teržan J, Jerman I. Role of CO2 during oxidative dehydrogenation of propane over bulk and activated-carbon supported cerium and vanadium based catalysts. Catalysis Letters, 2021, 151(10): 2816–2832

    Article  Google Scholar 

  28. Gambo Y, Adamu S, Abdulrasheed A A, Lucky R A, Ba-Shammakh M S, Hossain M M. Catalyst design and tuning for oxidative dehydrogenation of propane—a review. Applied Catalysis A: General, 2021, 609: 117914

    Article  CAS  Google Scholar 

  29. Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts. Chemical Reviews, 2013, 113(8): 5782–5816

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Yu J, Wageh S, Al-Ghamdi A A, Xie J. Graphene in photocatalysis: a review. Small, 2016, 12(48): 6640–6696

    Article  CAS  PubMed  Google Scholar 

  31. Hu C, Dai L. Doping of carbon materials for metal-free electrocatalysis. Advanced Materials, 2019, 31(7): 1804672

    Article  Google Scholar 

  32. Li C, Wang G. Dehydrogenation of light alkanes to monoolefins. Chemical Society Reviews, 2021, 50(7): 4359–4381

    Article  CAS  PubMed  Google Scholar 

  33. Watanabe R, Tsujioka M, Fukuhara C. Performance of non-stoichiometric perovskite catalyst (AxCrO3δ, A: La, Pr, Nd) for dehydrogenation of propane under steam condition. Catalysis Letters, 2016, 146(12): 2458–2467

    Article  CAS  Google Scholar 

  34. Dai Y, Gao X, Wang Q, Wan X, Zhou C, Yang Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chemical Society Reviews, 2021, 50(9): 5590–5630

    Article  CAS  PubMed  Google Scholar 

  35. James O O, Mandal S, Alele N, Chowdhury B, Maity S. Lower alkanes dehydrogenation: strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 2016, 149: 239–255

    Article  CAS  Google Scholar 

  36. Iranshahi D, Salimi P, Pourmand Z, Saeidi S, Klemeš J J. Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production. Chemical Engineering and Processing, 2017, 120: 258–267

    Article  CAS  Google Scholar 

  37. Nguyen T T, Aouine M, Millet J M M. Optimizing the efficiency of MoVTeNbO catalysts for ethane oxidative dehydrogenation to ethylene. Catalysis Communications, 2012, 21: 22–26

    Article  CAS  Google Scholar 

  38. Rahman S T, Choi J R, Lee J H, Park S J. The role of CO2 as a mild oxidant in oxidation and dehydrogenation over catalysts: a review. Catalysts, 2020, 10(9): 1075

    Article  CAS  Google Scholar 

  39. Chen D, Holmen A, Sui Z, Zhou X. Carbon mediated catalysis: a review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35(6): 824–841

    Article  CAS  Google Scholar 

  40. Qi W, Su D. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catalysis, 2014, 4(9): 3212–3218

    Article  CAS  Google Scholar 

  41. Zhao Z, Ge G, Li W, Guo X, Wang G. Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: a review. Chinese Journal of Catalysis, 2016, 37(5): 644–670

    Article  CAS  Google Scholar 

  42. Sun X, Han P, Li B, Mao S, Liu T, Ali S, Lian Z, Su D. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account. Chemical Communications (Cambridge), 2018, 54(8): 864–875

    Article  CAS  Google Scholar 

  43. Zhao T J, Sun W Z, Gu X Y, Rønning M, Chen D, Dai Y C, Yuan W K, Holmen A. Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene. Applied Catalysis A, General, 2007, 323: 135–146

    Article  CAS  Google Scholar 

  44. Zhang J, Liu X, Blume R, Zhang A, Schlögl R, Su D S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science, 2008, 322(5898): 73–77

    Article  CAS  PubMed  Google Scholar 

  45. Delgado J J, Chen X W, Frank B, Su D S, Schlögl R. Activation processes of highly ordered carbon nanofibers in the oxidative dehydrogenation of ethylbenzene. Catalysis Today, 2012, 186(1): 93–98

    Article  CAS  Google Scholar 

  46. Niebrzydowska P, Janus R, Kuśtrowski P, Jarczewski S, Wach A, Silvestre-Albero A M, Rodríguez-Reinoso F. A simplified route to the synthesis of CMK-3 replica based on precipitation polycondensation of furfuryl alcohol in SBA-15 pore system. Carbon, 2013, 64: 252–261

    Article  CAS  Google Scholar 

  47. Hu Z P, Yang D D, Wang Z, Yuan Z Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254

    Article  CAS  Google Scholar 

  48. Huang R, Liu H Y, Zhang B S, Sun X Y, Liang C H, Su D S, Zong B N, Rong J F. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes. ChemSusChem, 2014, 7(12): 3476–3482

    Article  CAS  PubMed  Google Scholar 

  49. Rao R, Yang M, Ling Q, Li C, Zhang Q, Yang H, Zhang A. A novel route of enhancing oxidative catalytic activity: hydroxylation of MWCNTs induced by sectional defects. Catalysis Science & Technology, 2014, 4(3): 665–671

    Article  CAS  Google Scholar 

  50. Pelech I, Soares O S G P, Pereira M F R, Figueiredo J L. Oxidative dehydrogenation of isobutane on carbon xerogel catalysts. Catalysis Today, 2015, 249: 176–183

    Article  CAS  Google Scholar 

  51. Qi W, Liu W, Zhang B, Gu X, Guo X, Su D. Oxidative dehydrierung an nanokohlenstoff: identifizierung und quantifizierung aktiver zentren durch chemische titration. Angewandte Chemie, 2013, 125(52): 14474–14478

    Article  Google Scholar 

  52. Qi W, Liu W, Guo X, Schlögl R, Su D. Oxidative dehydrogenation on nanocarbon: intrinsic catalytic activity and structure-function relationships. Angewandte Chemie International Edition, 2015, 54(46): 13682–13685

    Article  CAS  PubMed  Google Scholar 

  53. Li B, Su D. The nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chemistry, 2014, 20(26): 7890–7894

    Article  CAS  PubMed  Google Scholar 

  54. Mao S, Li B, Su D. The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2(15): 5287–5294

    Article  CAS  Google Scholar 

  55. Wang R, Sun X, Zhang B, Sun X, Su D. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core–shell sp2/sp3 nanocomposite structure. Chemistry, 2014, 20(21): 6324–6331

    Article  CAS  PubMed  Google Scholar 

  56. Schwartz V, Fu W, Tsai Y T, Meyer H MIII, Rondinone A J, Chen J, Wu Z, Overbury S H, Liang C. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions. ChemSusChem, 2013, 6(5): 840–846

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Zhang Z, Wang J, Ma C, Yang H, Hao Z. Direct dehydrogenation of isobutane to isobutene over carbon catalysts. Chinese Journal of Catalysis, 2015, 36(8): 1214–1222

    Article  CAS  Google Scholar 

  58. Guo X, Qi W, Liu W, Yan P, Li F, Liang C, Su D. Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427

    Article  CAS  Google Scholar 

  59. Zhang J, Su D S, Blume R, Schlögl R, Wang R, Yang X, Gajović A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angewandte Chemie International Edition, 2010, 49(46): 8640–8644

    Article  CAS  PubMed  Google Scholar 

  60. Hu Z P, Chen C, Ren J T, Yuan Z Y. Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Applied Catalysis A: General, 2018, 559: 85–93

    Article  CAS  Google Scholar 

  61. Rao R, Ling Q, Dong H, Dong X, Li N, Zhang A. Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant. Chemical Engineering Journal, 2016, 301: 115–122

    Article  CAS  Google Scholar 

  62. Shi W, Peng Y, Steiner S AIII, Li J, Plata D L. Carbon dioxide promotes dehydrogenation in the equimolar C2H2−CO2 reaction to synthesize carbon nanotubes. Small, 2018, 14(11): 1703482

    Article  Google Scholar 

  63. Parent L R, Bakalis E, Proetto M, Li Y, Park C, Zerbetto F, Gianneschi N C. Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Accounts of Chemical Research, 2018, 51(1): 3–11

    Article  CAS  PubMed  Google Scholar 

  64. Zheng Y, Huang X, Chen J, Wu K, Wang J, Zhang X. A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials, 2021, 14(14): 3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Knyazheva O A, Baklanova O N, Lavrenov A V. Catalytic dehydrogenation on carbon. Solid Fuel Chemistry, 2020, 54(6): 345–353

    Article  CAS  Google Scholar 

  66. Ma T Y, Liu L, Yuan Z Y. Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42(9): 3977–4003

    Article  CAS  PubMed  Google Scholar 

  67. Liu L, Zhu Y P, Su M, Yuan Z Y. Metal-free carbonaceous materials as promising heterogeneous catalysts. ChemCatChem, 2015, 7(18): 2765–2787

    Article  CAS  Google Scholar 

  68. Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications, 2011, 47(29): 8334–8336

    Article  CAS  PubMed  Google Scholar 

  69. Hu Z P, Ren J T, Yang D, Wang Z, Yuan Z Y. Mesoporous carbons as metal-free catalysts for propane dehydrogenation: effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40(9): 1385–1394

    Article  CAS  Google Scholar 

  70. Liu L, Deng Q F, Agula B, Ren T Z, Liu Y P, Zhaorigetu B, Yuan Z Y. Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186(1): 35–41

    Article  CAS  Google Scholar 

  71. Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16(1): 81–85

    Article  CAS  Google Scholar 

  72. Zhang W, Zhao G, Muschin T, Bao A. Nitrogen - doped mesoporous carbon materials for oxidative dehydrogenation of propane. Surface and Interface Analysis, 2020, 53(1): 100–107

    Article  Google Scholar 

  73. Szewczyk I, Rokicińska A, Michalik M, Chen J, Jaworski A, Aleksis R, Pell A J, Hedin N, Slabon A, Kuśtrowski P. Electrochemical denitrification and oxidative dehydrogenation of ethylbenzene over N-doped mesoporous carbon: atomic level understanding of catalytic activity by 15N NMR. Chemistry of Materials, 2020, 32(17): 7263–7273

    Article  CAS  Google Scholar 

  74. Li L, Zhu W, Liu Y, Shi L, Liu H, Ni Y, Liu S, Zhou H, Liu Z. Phosphorous-modified ordered mesoporous carbon for catalytic dehydrogenation of propane to propylene. RSC Advances, 2015, 5(69): 56304–56310

    Article  CAS  Google Scholar 

  75. Song Y, Liu G, Yuan Z Y. N-, P-, and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Advances, 2016, 6(97): 94636–94642

    Article  CAS  Google Scholar 

  76. Schwartz V, Xie H, Meyer H MIII, Overbury S H, Liang C. Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon, 2011, 49(2): 659–668

    Article  CAS  Google Scholar 

  77. Yin C, He J, Liu S. Carbon nanotubes derived from industrial resin for the oxidative dehydrogenation of ethylbenzene. ChemistrySelect, 2020, 5(22): 6674–6677

    Article  CAS  Google Scholar 

  78. Bychko I, Abakumov A, Nikolenko A, Selyshchev O V, Zahn D R T, Khavrus V O, Tang J, Strizhak P. Ethane direct dehydrogenation over carbon nanotubes and reduced graphene oxide. Chemistry Select, 2021, 6(34): 8981–8984

    CAS  Google Scholar 

  79. Li J, Yu P, Xie J, Liu J, Wang Z, Wu C, Rong J, Liu H, Su D. Improving the alkene selectivity of nanocarbon-catalyzed oxidative dehydrogenation of n-butane by refinement of oxygen species. ACS Catalysis, 2017, 7(10): 7305–7311

    Article  CAS  Google Scholar 

  80. Yuan H, Sun Z, Liu H, Zhang B, Chen C, Wang H, Yang Z, Zhang J, Wei F, Su D S. Immobilizing carbon nanotubes on SiC foam as a monolith catalyst for oxidative dehydrogenation reactions. ChemCatChem, 2013, 5(7): 1713–1717

    Article  CAS  Google Scholar 

  81. Zhang Y, Wang J, Rong J, Diao J, Zhang J, Shi C, Liu H, Su D. A facile and efficient method to fabricate highly selective nanocarbon catalysts for oxidative dehydrogenation. ChemSusChem, 2017, 10(2): 353–358

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Huang R, Feng Z, Liu H, Shi C, Rong J, Zong B, Su D. Phosphate modified carbon nanotubes for oxidative dehydrogenation of n-butane. Journal of Energy Chemistry, 2016, 25(3): 349–353

    Article  Google Scholar 

  83. Frank B, Zhang J, Blume R, Schlogl R, Su D S. Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angewandte Chemie International Edition, 2009, 48(37): 6913–6917

    Article  CAS  PubMed  Google Scholar 

  84. Liu W, Wang C, Herold F, Etzold B J M, Su D, Qi W. Oxidative dehydrogenation on nanocarbon: effect of heteroatom doping. Applied Catalysis B: Environmental, 2019, 258: 117982

    Article  CAS  Google Scholar 

  85. Zhao Z, Dai Y, Ge G, Guo X, Wang G. Increased active sites and their accessibility of a N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Advances, 2015, 5(65): 53095–53099

    Article  CAS  Google Scholar 

  86. Zhao Z, Dai Y, Ge G, Wang G. Explosive decomposition of a melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis. Chemistry, 2015, 21(22): 8004–8009

    Article  CAS  PubMed  Google Scholar 

  87. Wang Q, Wang H, Zhang Y, Wen G, Liu H, Su D. Syntheses and catalytic applications of the high-N-content, the cup-stacking and the macroscopic nitrogen doped carbon nanotubes. Journal of Materials Science and Technology, 2017, 33(8): 843–849

    Article  CAS  Google Scholar 

  88. Cao T, Dai X, Liu W, Fu Y, Qi W. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon, 2022, 189: 199–209

    Article  CAS  Google Scholar 

  89. Li J, Yu P, Xie J, Zhang Y, Liu H, Su D, Rong J. Grignard reagent reduced nanocarbon material in oxidative dehydrogenation of n-butane. Journal of Catalysis, 2018, 360: 51–56

    Article  CAS  Google Scholar 

  90. Hong G, Diao S, Antaris A L, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chemical Reviews, 2015, 115(19): 10816–10906

    Article  CAS  PubMed  Google Scholar 

  91. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K H. Nanodiamonds: emerging face of future nanotechnology. Carbon, 2019, 143: 678–699

    Article  CAS  Google Scholar 

  92. Shvidchenko A V, Eidelman E D, Vul A Y, Kuznetsov N M, Stolyarova D Y, Belousov S I, Chvalun S N. Colloids of detonation nanodiamond particles for advanced applications. Advances in Colloid and Interface Science, 2019, 268: 64–81

    Article  CAS  PubMed  Google Scholar 

  93. Zhou Q, Ge G, Guo Z, Liu Y, Zhao Z. Poly(imidazolium-methylene)-assisted grinding strategy to prepare nanocarbon-embedded network monoliths for carbocatalysis. ACS Catalysis, 2020, 10(24): 14604–14614

    Article  CAS  Google Scholar 

  94. Mochalin V N, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nature Nanotechnology, 2011, 7(1): 11–23

    Article  PubMed  Google Scholar 

  95. Wood C S, Stevens M M. Improving the image of nanoparticles. Nature, 2016, 539(7630): 505–506

    Article  CAS  PubMed  Google Scholar 

  96. Ba H, Podila S, Liu Y, Mu X, Nhut J M, Papaefthimiou V, Zafeiratos S, Granger P, Pham-Huu C. Nanodiamond decorated few-layer graphene composite as an efficient metal-free dehydrogenation catalyst for styrene production. Catalysis Today, 2015, 249: 167–175

    Article  CAS  Google Scholar 

  97. Diao J, Liu H, Feng Z, Zhang Y, Chen T, Miao C, Yang W, Su D S. Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. Catalysis Science & Technology, 2015, 5(11): 4950–4953

    Article  CAS  Google Scholar 

  98. Thanh T T, Ba H, Truong-Phuoc L, Nhut J M, Ersen O, Begin D, Janowska I, Nguyen D L, Granger P, Pham-Huu C. A few-layer graphene-graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014, 2(29): 11349–11357

    Article  CAS  Google Scholar 

  99. Roldán L, Benito A M, García-Bordejé E. Self-assembled graphene aerogel and nanodiamond hybrids as high performance catalysts in oxidative propane dehydrogenation. Journal of Materials Chemistry A, 2015, 3(48): 24379–24388

    Article  Google Scholar 

  100. Ba H, Liu Y, Mu X, Doh W H, Nhut J M, Granger P, Pham-Huu C. Macroscopic nanodiamonds/β-SiC composite as metal-free catalysts for steam-free dehydrogenation of ethylbenzene to styrene. Applied Catalysis A: General, 2015, 499: 217–226

    Article  CAS  Google Scholar 

  101. Ge G, Wei X, Guo H, Zhao Z. Assembly - in - foam approach to construct nanodiamond/carbon nanotube hybrid monolithic carbocatalysts for direct dehydrogenation of ethylbenzene to styrene. European Journal of Inorganic Chemistry, 2022, 2022(26).

  102. Chen C, Hu Z P, Zhang S M, Yuan Z Y. Advance in the catalysts of direct dehydrogenation of propane to propylene. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 639–652

    CAS  Google Scholar 

  103. Liu X, Frank B, Zhang W, Cotter T P, Schlogl R, Su D S. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp3-to-sp2 lattice rearrangement. Angewandte Chemie International Edition, 2011, 50(14): 3318–3322

    Article  CAS  PubMed  Google Scholar 

  104. Sun X, Ding Y, Zhang B, Huang R, Chen D, Su D S. Insight into the enhanced selectivity of phosphate-modified annealed nanodiamond for oxidative dehydrogenation reactions. ACS Catalysis, 2015, 5(4): 2436–2444

    Article  CAS  Google Scholar 

  105. Sun X, Ding Y, Zhang B, Huang R, Su D S. New insights into the oxidative dehydrogenation of propane on borate-modified nanodiamond. Chemical Communications, 2015, 51(44): 9145–9148

    Article  CAS  PubMed  Google Scholar 

  106. Liu Y, Ba H, Luo J, Wu K H, Nhut J M, Su D S, Pham-Huu C. Structure-performance relationship of nanodiamonds@nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catalysis Today, 2018, 301: 38–47

    Article  CAS  Google Scholar 

  107. Zhou Q, Guo X, Song C, Zhao Z. Defect-enriched N,O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. ACS Applied Nano Materials, 2019, 2(4): 2152–2159

    Article  CAS  Google Scholar 

  108. Ge G, Wei X, Guo H, Zhao Z. An efficient nanodiamond-based monolithic foam catalyst prepared by a facile thermal impregnation strategy for direct dehydrogenation of ethylbenzene to styrene. Chinese Chemical Letters, 2023, 34(5): 107808

    Article  CAS  Google Scholar 

  109. Ge G, Guo X, Song C, Zhao Z. A mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production. Catalysis Science & Technology, 2020, 10(4): 1048–1055

    Article  CAS  Google Scholar 

  110. Luo Z, Wan Q, Yu Z, Lin S, Xie Z, Wang X. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nature Communications, 2021, 12(1): 6542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao W, He D W, Wang Y S, Du X, Xin H. Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials. Chinese Physics B, 2015, 24(4): 047204

    Article  Google Scholar 

  112. Gao Y, Ma D, Wang C, Guan J, Bao X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434

    Article  CAS  PubMed  Google Scholar 

  113. Gao Y, Hu G, Zhong J, Shi Z, Zhu Y, Su D S, Wang J, Bao X, Ma D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113

    Article  CAS  PubMed  Google Scholar 

  114. Eslek-Koyuncu D D. Microwave-assisted non-oxidative ethane dehydrogenation over different carbon materials. Diamond and Related Materials, 2020, 110: 108130

    Article  CAS  Google Scholar 

  115. Tang S, Cao Z. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Physical Chemistry Chemical Physics, 2012, 14(48): 16558–16565

    Article  CAS  PubMed  Google Scholar 

  116. Dathar G K, Tsai Y T, Gierszal K, Xu Y, Liang C, Rondinone A J, Overbury S H, Schwartz V. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane. ChemSusChem, 2014, 7(2): 483–491

    Article  CAS  PubMed  Google Scholar 

  117. Brooks A, Jenkins S J, Wrabetz S, McGregor J, Sacchi M. The dehydrogenation of butane on metal-free graphene. Journal of Colloid and Interface Science, 2022, 619: 377–387

    Article  CAS  PubMed  Google Scholar 

  118. Chen C, Sun M L, Hu Z P, Liu Y P, Zhang S M, Yuan Z Y. Nature of active phase of VOx catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020, 41(2): 276–285

    Article  CAS  Google Scholar 

  119. Heidarinejad Z, Dehghani M H, Heidari M, Javedan G, Ali I, Sillanpää M. Methods for preparation and activation of activated carbon: a review. Environmental Chemistry Letters, 2020, 18(2): 393–415

    Article  CAS  Google Scholar 

  120. Ao W, Fu J, Mao X, Kang Q, Ran C, Liu Y, Zhang H, Gao Z, Li J, Liu G, Dai J. Microwave assisted preparation of activated carbon from biomass: a review. Renewable & Sustainable Energy Reviews, 2018, 92: 958–979

    Article  CAS  Google Scholar 

  121. MacDermid-Watts K, Pradhan R, Dutta A. Catalytic hydrothermal carbonization treatment of biomass for enhanced activated carbon: a review. Waste and Biomass Valorization, 2020, 12(5): 2171–2186

    Article  Google Scholar 

  122. Pietrzak R, Bandosz T J. Activated carbons modified with sewage sludge derived phase and their application in the process of NO2 removal. Carbon, 2007, 45(13): 2537–2546

    Article  CAS  Google Scholar 

  123. Karatepe N, Orbak İ, Yavuz R, Özyuğuran A. Sulfur dioxide adsorption by activated carbons having different textural and chemical properties. Fuel, 2008, 87(15–16): 3207–3215

    Article  CAS  Google Scholar 

  124. Mudoga H L, Yucel H, Kincal N S. Decolorization of sugar syrups using commercial and sugar beet pulp based activated carbons. Bioresource Technology, 2008, 99(9): 3528–3533

    Article  CAS  PubMed  Google Scholar 

  125. Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256

    Article  CAS  PubMed  Google Scholar 

  126. Tsyntsarski B, Stoycheva I, Tsoncheva T, Genova I, Dimitrov M, Petrova B, Paneva D, Cherkezova-Zheleva Z, Budinova T, Kolev H, Gomis-Berenguer A, Ania C O, Mitov I, Petrov N. Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition. Fuel Processing Technology, 2015, 137: 139–147

    Article  CAS  Google Scholar 

  127. Matos I, Bernardo M, Fonseca I. Porous carbon: a versatile material for catalysis. Catalysis Today, 2017, 285: 194–203

    Article  CAS  Google Scholar 

  128. Ma S, Li H, Zhang G, Iqbal T, Li K, Lu Q. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst. Frontiers of Environmental Science & Engineering, 2020, 15(2): 25

    Article  CAS  Google Scholar 

  129. Köse K Ö, Aydınol M K. Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis. International Journal of Energy Research, 2022, 46(15): 22078–22088

    Article  Google Scholar 

  130. Hu Z P, Zhang L F, Wang Z, Yuan Z Y. Bean dregs-derived hierarchical porous carbons as metal-free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93(12): 3410–3417

    Article  CAS  Google Scholar 

  131. Cheng Z, Wang Y, Jin D, Liu J, Wang W, Gu Y, Ni W, Feng Z, Wu M. Petroleum pitch-derived porous carbon as a metal-free catalyst for direct propane dehydrogenation to propylene. Catalysis Today, 2023, 410: 164–174

    Article  CAS  Google Scholar 

  132. Hu Z P, Zhao H, Chen C, Yuan Z Y. Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316: 214–222

    Article  CAS  Google Scholar 

  133. Martin-Sanchez N, Soares O S G P, Pereira M F R, Sanchez-Montero M J, Figueiredo J L, Salvador F. Oxidative dehydrogenation of isobutane catalyzed by an activated carbon fiber cloth exposed to supercritical fluids. Applied Catalysis A: General, 2015, 502: 71–77

    Article  CAS  Google Scholar 

  134. Büchele S, Zichittella G, Kanatakis S, Mitchell S, Pérez Ramírez J. Impact of heteroatom speciation on the activity and stability of carbon-based catalysts for propane dehydrogenation. ChemCatChem, 2021, 13(11): 2599–2608

    Article  Google Scholar 

  135. de Jesús Díaz Velásquez J, Suárez L M C, Figueiredo J L. Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis A: General, 2006, 311: 51–57

    Article  Google Scholar 

  136. Zhang Y, Diao J, Rong J, Zhang J, Xie J, Huang F, Jia Z, Liu H, Su D S. An efficient metal-free catalyst for oxidative dehydrogenation reaction: activated carbon decorated with few-layer graphene. ChemSusChem, 2018, 11(3): 536–541

    Article  CAS  PubMed  Google Scholar 

  137. Ling Q, Wu R, Wang Z H, Liang H W, Lei Z, Zhao Z G, Ke Q P, Liu X C, Cui P. Promotion role of B doping in N,B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 1785–1802

    Article  CAS  Google Scholar 

  138. Delgado J, Su D, Rebmann G, Keller N, Gajovic A, Schlogl R. Immobilized carbon nanofibers as industrial catalyst for ODH reactions. Journal of Catalysis, 2006, 244(1): 126–129

    Article  CAS  Google Scholar 

  139. Klepel O, Utgenannt S, Vormelchert C, König M, Meißner A, Hansen F, Bölte J H, Sieber T, Heinemann R, Bron M, Rokicińska A, Jarczewski S, Kuśtrowski P. Redox catalysts based on amorphous porous carbons. Microporous and Mesoporous Materials, 2021, 323: 111257

    Article  CAS  Google Scholar 

  140. Cao X, Wu X, Liu Y, Geng H, Yu S, Liu S. Boron and nitrogen co-doped porous carbon nanospheres for oxidative dehydrogenation of ethane to ethylene. Carbon, 2022, 197: 120–128

    Article  CAS  Google Scholar 

  141. Ba H, Truong Phuoc L, Liu Y, Duong Viet C, Nhut J M, Nguyen Dinh L, Granger P, Pham Huu C. Hierarchical carbon nanofibers/graphene composite containing nanodiamonds for direct dehydrogenation of ethylbenzene. Carbon, 2016, 96: 1060–1069

    Article  CAS  Google Scholar 

  142. Liu Y, Luo J, Helleu C, Behr M, Ba H, Romero T, Hébraud A, Schlatter G, Ersen O, Su D S, Pham-Huu C. Hierarchical porous carbon fibers/carbon nanofibers monolith from electrospinning/CVD processes as a high effective surface area support platform. Journal of Materials Chemistry A, 2017, 5(5): 2151–2162

    Article  CAS  Google Scholar 

  143. Dai X, Li F, Zhang X, Cao T, Lu X, Qi W. Oxidative dehydrogenation on nanocarbon: polydopamine hollow nanospheres as novel highly efficient catalysts. FlatChem, 2021, 25: 100220

    Article  CAS  Google Scholar 

  144. Wang J, Wang L, Diao J, Xie X, Lin G, Jia Q, Liu H, Sui G. Fabrication of three dimensional SiC@C hybrid for efficient direct dehydrogenation of ethylbenzene to styrene. Journal of Materials Science and Technology, 2022, 103: 209–214

    Article  CAS  Google Scholar 

  145. Janus P, Janus R, Dudek B, Drozdek M, Silvestre-Albero A, Rodríguez-Reinoso F, Kuśtrowski P. On mechanism of formation of SBA-15/furfuryl alcohol-derived mesoporous carbon replicas and its relationship with catalytic activity in oxidative dehydrogenation of ethylbenzene. Microporous and Mesoporous Materials, 2020, 299: 110118

    Article  CAS  Google Scholar 

  146. Frank B, Morassutto M, Schomäcker R, Schlögl R, Su D S. Oxidative dehydrogenation of ethane over multiwalled carbon nanotubes. ChemCatChem, 2010, 2(6): 644–648

    Article  CAS  Google Scholar 

  147. Wang Z, Yang B, Wang Y, Zhao Y, Cao X M, Hu P. Identifying the trend of reactivity for sp2 materials: an electron delocalization model from first principles calculations. Physical Chemistry Chemical Physics, 2013, 15(24): 9498–9502

    Article  CAS  PubMed  Google Scholar 

  148. Pham H N, Sattler J J, Weckhuysen B M, Datye A K. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts. ACS Catalysis, 2016, 6(4): 2257–2264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu L, Lopez Haro M, Lopes C W, Rojas Buzo S, Concepcion P, Manzorro R, Simonelli L, Sattler A, Serna P, Calvino J J, Corma A. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nature Catalysis, 2020, 3(8): 628–638

    Article  CAS  Google Scholar 

  150. Zhu Y, Kong X, Yin J, You R, Zhang B, Zheng H, Wen X, Zhu Y, Li Y W. Covalent-bonding to irreducible SiO2 leads to high-loading and atomically dispersed metal catalysts. Journal of Catalysis, 2017, 353: 315–324

    Article  CAS  Google Scholar 

  151. Ombaka L M, Ndungu P, Nyamori V O. Usage of carbon nanotubes as platinum and nickel catalyst support in dehydrogenation reactions. Catalysis Today, 2013, 217: 65–75

    Article  CAS  Google Scholar 

  152. Chen X, Peng M, Xiao D, Liu H, Ma D. Fully exposed metal clusters: fabrication and application in alkane dehydrogenation. ACS Catalysis, 2022, 12(20): 12720–12743

    Article  CAS  Google Scholar 

  153. Yin P, Luo X, Ma Y, Chu S Q, Chen S, Zheng X, Lu J, Wu X J, Liang H W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nature Communications, 2021, 12(1): 3135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Huang F, Deng Y, Chen Y, Cai X, Peng M, Jia Z, Xie J, Xiao D, Wen X, Wang N, Jiang Z, Liu H, Ma D. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nature Communications, 2019, 10(1): 4431

    Article  PubMed  PubMed Central  Google Scholar 

  155. Yu X H, Yi J L, Zhang R L, Wang F Y, Liu L. Hollow carbon spheres and their noble metal-free hybrids in catalysis. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1380–1407

    Article  CAS  Google Scholar 

  156. Liu H, Wang J, Feng Z, Lin Y, Zhang L, Su D. Facile synthesis of Au nanoparticles embedded in an ultrathin hollow graphene nanoshell with robust catalytic performance. Small, 2015, 10(38): 5059–5064

    Article  Google Scholar 

  157. Agula B, Sun M, Liang S, Bao Y, Jia M, Xu F, Yuan Z Y. Oxidative dehydrogenation of propane over nanostructured mesoporous VOx/CexZr1−xO2 catalysts. Advanced Materials Science and Technology, 2022, 4(2): 049385

    Article  Google Scholar 

  158. Cao T, Dai X, Li F, Liu W, Bai Y, Fu Y, Qi W. Efficient non-precious metal catalyst for propane dehydrogenation: atomically dispersed cobalt-nitrogen compounds on carbon nanotubes. ChemCatChem, 2021, 13(13): 3067–3073

    Article  CAS  Google Scholar 

  159. Cao T, Dai X, Fu Y, Qi W. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: highly dispersed zinc anchored on N-doped carbon. Applied Surface Science, 2023, 607: 155055

    Article  CAS  Google Scholar 

  160. Wang H, Chai S, Li P, Yang Y, Wang X. Non-oxidative Propane dehydrogenation over vanadium doped graphitic carbon nitride catalysts. Catalysis Letters, 2023, 153(4): 1120–1129

    Article  CAS  Google Scholar 

  161. Ballarini A, Bocanegra S, Mendez J, de Miguel S, Zgolicz P. Application of novel catalysts supported on carbonaceous materials in the direct non-oxidative dehydrogenation of n-butane to olefins. Inorganic Chemistry Communications, 2022, 142: 109638

    Article  CAS  Google Scholar 

  162. Chernyak S A, Kustov A L, Stolbov D N, Tedeeva M A, Isaikina O Y, Maslakov K I, Usol’tseva N V, Savilov S V. Chromium catalysts supported on carbon nanotubes and graphene nanoflakes for CO2-assisted oxidative dehydrogenation of propane. Applied Surface Science, 2022, 578: 152099

    Article  CAS  Google Scholar 

  163. Kong N, Fan X, Liu F, Wang L, Lin H, Li Y, Lee S T. Single vanadium atoms anchored on graphitic carbon nitride as a high-performance catalyst for non-oxidative propane dehydrogenation. ACS Nano, 2020, 14(5): 5772–5779

    Article  CAS  PubMed  Google Scholar 

  164. Sun X Y, Xue J H, Ren Y, Li X Y, Zhou L J, Li B, Zhao Z. Catalytic property and stability of subnanometer Pt cluster on carbon nanotube in direct propane dehydrogenation. Chinese Journal of Chemistry, 2021, 39(3): 661–665

    Article  CAS  Google Scholar 

  165. Obunai R, Tamura K, Ogino I, Mukai S R, Ueda W. Mo-V-O nanocrystals synthesized in the confined space of a mesoporous carbon. Applied Catalysis A: General, 2021, 624: 118294

    Article  CAS  Google Scholar 

  166. Xu S L, Shen S C, Wei Z Y, Zhao S, Zuo L J, Chen M X, Wang L, Ding Y W, Chen P, Chu S Q, Lin Y, Qian K, Liang H W. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Research, 2020, 13(10): 2735–2740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22179065, 22111530112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, S., Zhai, S., Chen, L. et al. Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene. Front. Chem. Sci. Eng. 17, 1623–1648 (2023). https://doi.org/10.1007/s11705-023-2328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2328-6

Keywords

Navigation