Skip to main content
Log in

Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes. Herein, CO2 is introduced into the cyclohexane conversion process on the HZSM-5 zeolite, which can improve the aromatic selectivity. By optimizing the reaction conditions, an improved aromatic (benzene, toluene, xylene, and C9+) selectivity of 48.2% can be obtained at the conditions of 2.7 MPa (CO2), 450 °C, and 1.7 h−1, which is better than that without CO2 (aromatic selectivity = 43.2%). In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates (e.g., carboxylic acid, anhydride, unsaturated aldehydes/ketones or ketene) would be formed during the cyclohexane conversion process in the presence of CO2. 13C isotope labeling experimental results demonstrate that CO2 can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity. This study may open a green, economic, and promising way to improve the aromatic selectivity for alkane aromatization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tomás R A F, Bordado J C M, Gomes J F P. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469

    Article  PubMed  Google Scholar 

  2. Zhang G Q, Bai T, Chen T F, Fan W T, Zhang X. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940

    Article  CAS  Google Scholar 

  3. Chen Z, Ni Y, Zhi Y, Wen F, Zhou Z, Wei Y, Zhu W, Liu Z. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics. Angewandte Chemie International Edition, 2018, 57(38): 12549–12553

    Article  CAS  PubMed  Google Scholar 

  4. Ye L, Song Q, Lo B T W, Zheng J, Kong D, Murray C A, Tang C C, Tsang S C E. Decarboxylation of lactones over Zn/ZSM-5: elucidation of the structure of the active site and molecular interactions. Angewandte Chemie International Edition, 2017, 56(36): 10711–10716

    Article  CAS  PubMed  Google Scholar 

  5. Carlson T R, Vispute T P, Huber G W. Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds. ChemSusChem, 2008, 1(5): 397–400

    Article  CAS  PubMed  Google Scholar 

  6. Gilani S Z A, Lu L, Arslan M T, Ali B, Wang Q, Wei F. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5. Catalysis Science & Technology, 2020, 10(10): 3366–3375

    Article  CAS  Google Scholar 

  7. Nawaz M A, Li M, Saif M, Song G, Wang Z, Liu D. Harnessing the synergistic interplay of Fischer–Tropsch synthesis (Fe–Co) bimetallic oxides in Na-FeMnCo/HZSM-5 composite catalyst for syngas conversion to aromatic hydrocarbons. ChemCatChem, 2021, 13(8): 1966–1980

    Article  CAS  Google Scholar 

  8. Zhang Y, Wu S, Xu X, Jiang H. Ethane aromatization and evolution of carbon deposits over nanosized and microsized Zn/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(3): 835–843

    Article  CAS  Google Scholar 

  9. Yuan J, Zhou S, Peng T, Wang G, Ou X M. Petroleum substitution, greenhouse gas emissions reduction and environmental benefits from the development of natural gas vehicles in china. Petroleum Science, 2018, 15(3): 644–656

    Article  Google Scholar 

  10. Bernstein H J. Bond energies in hydrocarbons. Transactions of the Faraday Society, 1962, 58: 2285–2306

    Article  CAS  Google Scholar 

  11. Hu Z P, Qin G, Han J, Zhang W, Wang N, Zheng Y, Jiang Q, Ji T, Yuan Z Y, Xiao J, Wei Y, Liu Z. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation. Journal of the American Chemical Society, 2022, 144(27): 12127–12137

    Article  CAS  PubMed  Google Scholar 

  12. Hu Z P, Yang D, Wang Z, Yuan Z Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40(9): 1233–1254

    Article  CAS  Google Scholar 

  13. Rodrigues V d O. Faro Júnior A C. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Applied Catalysis A: General, 2012, 435–436: 68–77

    Article  Google Scholar 

  14. Liu D, Cao L, Zhang G, Zhao L, Gao J, Xu C. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts—a review. Fuel Processing Technology, 2021, 216: 106770

    Article  CAS  Google Scholar 

  15. Rane N, Kersbulck M, van Santen R A, Hensen E J M. Cracking of n-heptane over Bransted acid sites and lewis acid Ga sites in ZSM-5 zeolite. Microporous and Mesoporous Materials, 2008, 110(2): 279–291

    Article  CAS  Google Scholar 

  16. Dooley K M, Chang C, Price G L. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts. Applied Catalysis A: General, 1992, 84(1): 17–30

    Article  CAS  Google Scholar 

  17. Yu C, Xu H, Ge Q, Li W. Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation. Journal of Molecular Catalysis A: Chemical, 2007, 266(1): 80–87

    Article  CAS  Google Scholar 

  18. Zhang Y, Zhou Y, Tang M, Liu X, Duan Y. Effect of la calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. Chemical Engineering Journal, 2012, 181–182: 530–537

    Article  Google Scholar 

  19. Wei C, Yu Q, Li J, Liu Z. Coupling conversion of n-hexane and CO over an HZSM-5 zeolite: tuning the H/C balance and achieving high aromatic selectivity. ACS Catalysis, 2020, 10(7): 4171–4180

    Article  CAS  Google Scholar 

  20. Wei C, Li J, Yang K, Yu Q, Zeng S, Liu Z. Aromatization mechanism of coupling reaction of light alkanes with CO over acidic zeolites: cyclopentenones as key intermediates. Chem Catalysis, 2021, 1(6): 1273–1290

    Article  CAS  Google Scholar 

  21. Niu X, Nie X, Yang C, Chen J G. CO2-assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts. Catalysis Science & Technology, 2020, 10(6): 1881–1888

    Article  CAS  Google Scholar 

  22. Gomez E, Nie X, Lee J H, Xie Z, Chen J G. Tandem reactions of CO2 reduction and ethane aromatization. Journal of the American Chemical Society, 2019, 141(44): 17771–17782

    Article  CAS  PubMed  Google Scholar 

  23. Buzzoni R, Bordiga S, Ricchiardi G, Lamberti C, Zecchina A, Bellussi G. Interaction of pyridine with acidic (H-ZSM5, H-β, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: an IR investigation. Langmuir, 1996, 12(4): 930–940

    Article  CAS  Google Scholar 

  24. Li P, Liu G, Wu H, Liu Y, Jiang J G, Wu P. Postsynthesis and selective oxidation properties of nanosized Sn-beta zeolite. Journal of Physical Chemistry C, 2011, 115(9): 3663–3670

    Article  CAS  Google Scholar 

  25. Zhou J, Lu G, Wu S. A new approach for the synthesis of α-methylene-γ-butyrolactones from α-bromomethyl acrylic acids (or esters). Synthetic Communications, 1992, 22(4): 481–487

    Article  CAS  Google Scholar 

  26. Gao X, Leng C, Zeng G, Fu D, Zhang Y, Liu Y. Ozone initiated heterogeneous oxidation of unsaturated carboxylic acids by ATR-FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 214: 177–183

    Article  CAS  PubMed  Google Scholar 

  27. Gu X, Yang C Q. FTIR spectroscopy study of the formation of cyclic anhydride intermediates of polycarboxylic acids catalyzed by sodium hypophosphite. Textile Research Journal, 2000, 70(1): 64–70

    Article  CAS  Google Scholar 

  28. Frederick B G, Ashton M R, Richardson N V, Jones T S. Orientation and bonding of benzoic acid, phthalic anhydride and pyromellitic dianhydride on Cu(110). Surface Science, 1993, 292(1): 33–46

    Article  CAS  Google Scholar 

  29. Lievens C, Mourant D, He M, Gunawan R, Li X, Li C Z. An FT-IR spectroscopic study of carbonyl functionalities in bio-oils. Fuel, 2011, 90(11): 3417–3423

    Article  CAS  Google Scholar 

  30. Margoshes M, Fassel V A. The infrared spectra of aromatic compounds: I.The out-of-plane C–H bending vibrations in the region 625–900 cm−1. Spectrochimica Acta, 1955, 7(1): 14–24

    Article  CAS  Google Scholar 

  31. Noguchi T, Sugiura M. Analysis of flash-induced FTIR difference spectra of the S-state cycle in the photosynthetic water-oxidizing complex by uniform 15N and 13C isotope labeling. Biochemistry, 2003, 42(20): 6035–6042

    Article  CAS  PubMed  Google Scholar 

  32. Hage W, Hallbrucker A, Mayer E. Metastable intermediates from glassy solutions. Part 3. FTIR spectra of α-carbonic acid and its 2H and 13C isotopic forms, isolated from methanolic solution. Journal of the Chemical Society, Faraday Transactions, 1996, 92(17): 3183–3195

    Article  CAS  Google Scholar 

  33. Goodall J J, Booth V K, Ashcroft A E, Wharton C W. Hydrogen-bonding in 2-aminobenzoyl-α-chymotrypsin formed by acylation of the enzyme with isatoic anhydride: IR and mass spectroscopic studies. ChemBioChem, 2002, 3(1): 68–75

    Article  CAS  PubMed  Google Scholar 

  34. Zeko T, Hannigan S F, Jacisin T, Guberman Pfeffer M J, Falcone E R, Guildford M J, Szabo C, Cole K E, Placido J, Daly E, Kubasik M A. FT-IR spectroscopy and density functional theory calculations of 13C isotopologues of the helical peptide Z-Aib6-OtBu. Journal of Physical Chemistry B, 2014, 118(1): 58–68

    Article  CAS  PubMed  Google Scholar 

  35. Sivasankar N, Frei H. Direct observation of kinetically competent surface intermediates upon ethylene hydroformylation over Rh/Al2O3 under reaction conditions by time-resolved fourier transform infrared spectroscopy. Journal of Physical Chemistry C, 2011, 115(15): 7545–7553

    Article  CAS  Google Scholar 

  36. Painter P C, Koenig J L. Liquid phase vibrational spectra of 13C-isotopes of benzene. Spectrochimica Acta Part A: Molecular Spectroscopy, 1977, 33(11): 1003–1018

    Article  Google Scholar 

  37. Clarkson J, Ewen Smith W. A DFT analysis of the vibrational spectra of nitrobenzene. Journal of Molecular Structure, 2003, 655(3): 413–422

    Article  CAS  Google Scholar 

  38. Le Noble W J, Brower K R, Brower C, Chang S. Pressure effects on the rates of aromatization of hexamethyl (dewar benzene) and dewar benzene. Volume as a factor in crowded molecules. Journal of the American Chemical Society, 1982, 104(11): 3150–3152

    Article  CAS  Google Scholar 

  39. Lombardo E A, Hall W K. The mechanism of isobutane cracking over amorphous and crystalline aluminosilicates. Journal of Catalysis, 1988, 112(2): 565–578

    Article  CAS  Google Scholar 

  40. You H. Influence of aromatization reaction conditions in the presence of HZSM-5 catalyst. Petroleum Science and Technology, 2006, 24(6): 707–716

    Article  CAS  Google Scholar 

  41. Krishnamurthy G, Bhan A, Delgass W N. Identity and chemical function of gallium species inferred from microkinetic modeling studies of propane aromatization over Ga/HZSM-5 catalysts. Journal of Catalysis, 2010, 271(2): 370–385

    Article  CAS  Google Scholar 

  42. Ma Z, Hou X, Chen B, Zhao L, Yuan E, Cui T. Analysis of n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. Reaction Chemistry & Engineering, 2022, 7(8): 1762–1778

    Article  CAS  Google Scholar 

  43. Chen W, Li G, Yi X, Day S J, Tarach K A, Liu Z, Liu S B, Edman Tsang S C, Góra Marek K, Zheng A. Molecular understanding of the catalytic consequence of ketene intermediates under confinement. Journal of the American Chemical Society, 2021, 143(37): 15440–15452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiao F, Pan X, Gong K, Chen Y, Li G, Bao X. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angewandte Chemie International Edition, 2018, 57(17): 4692–4696

    Article  CAS  PubMed  Google Scholar 

  45. Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X. Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFE0116000), the National Natural Science Foundation of China (Grant Nos. 22202193, 21991092, 21991090, 22172166 and 22288101), the China Postdoctoral Science Foundation (Grant No. 2019M661147), the Excellent Postdoctoral Support Program of Dalian Institute of Chemical Physics, CAS, the Excellent Research Assistant Funding Project of CAS, the Youth Innovation Promotion Association CAS (Grant No. 2021182), the Innovation Research Foundation of Dalian Institute of Chemical Physics, Chinese Academy of Sciences (Grant No. DICP I202217)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfeng Han or Zhongmin Liu.

Ethics declarations

Conflicts of interest There are no conflicts to declare.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Hu, ZP., Han, J. et al. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling. Front. Chem. Sci. Eng. 17, 1801–1808 (2023). https://doi.org/10.1007/s11705-023-2325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2325-9

Keywords

Navigation